a2 United States Patent

Hanson et al.

US010255280B2

US 10,255,280 B2
Apr. 9,2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

UNIVERSAL PARSING FRAMEWORK
SYSTEMS AND METHODS

Applicant: Open Text GXS ULC, Halifax (CA)

Inventors: Phil Hanson, Richardson, TX (US);
Kris Loia, Richardson, TX (US)

Assignee: Open Text GXS ULC, Halifax (CA)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 58 days.

Appl. No.: 15/467,791

Filed: Mar. 23, 2017

Prior Publication Data

US 2017/0277677 Al Sep. 28, 2017

Related U.S. Application Data

Provisional application No. 62/312,088, filed on Mar.
23, 2016.

Int. CL.

GO6F 17/27 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC i, GO6F 17/30 (2013.01)

Field of Classification Search
USPC 704/1-10, 230-257, 270-277
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0201697 Al* GO6F 17/2705

717/143

8/2008 Matsa

* cited by examiner

Primary Examiner — Huyen X Vo
(74) Attorney, Agent, or Firm — Sprinkle IP Law Group

(57) ABSTRACT

An applicant can instantiate a parsing framework, provide an
input stream, attach observers, and initiate parsing, which
inverts control to the parsing framework. The parsing frame-
work can have an observer manager, a parser controller, and
parsers. The observer manager manages observer design
patterns from which the observers are instantiated. The
parser controller determines which parser would be appro-
priate for parsing the input stream and instantiate the appro-
priate parser(s). The parser controller gets the callbacks from
the parsers and communicates outcomes to the observer
manager. The observer manager determines which of the
observers is to be notified, generates parsing notifications
accordingly, and dispatches the parsing notifications directly
to the observers. The application can be any application that
needs parsing in an electronic information exchange plat-
form. The input stream can be created by the application
opening a document received from a backend system com-
municatively connected to the electronic information
exchange platform.

20 Claims, 11 Drawing Sheets

OBSERVERABLEINVERSION OF CONTROL (I0C) LAYER 400
RECEIVE GENERATE DISPATCH PARSING
420~ | meuT o';@‘é':&gss IEI‘}T:T“I“(?N PARSING NOTIFICATION(S)
STREAM NOTIFIGATION(S) | | To oBsERVER(S)
14 4 I N N
401 403 405 407 409
PARSER CONTROLLER LAYER
430 DETERMINE INSTANTIATE PROCESS PARSER
1 | APPROPRIATE PARSER(S) DETERMINED PARSER(S) CALLBACK(S)
4
431 433 435
PARSER IMPLEMENTATIONS LAYER
a1 PARSING INPUT STREAM |
43| MAKE CALLBACK(S) TO PARSER CONTROLLER |
440"
DONE PARSING?

US 10,255,280 B2

Sheet 1 of 11

Apr. 9,2019

U.S. Patent

a7 Did .
VZ Dlid
Ove~JI" suzsuvd suaswvg - 0FC
0EZ~ HITIOHINOD HITIONINOD | ~0€2 | g17
YISV Wasuvd -’
HIOYNYIN HIOYNYW
02271 ¥3AdISEO WasyEseo [~022
oL7 NOLYOddy
NOLLYO ey 707
A/
ol
0ct 1 'DId
(SINaWDIS WYLS HHOMINVYS {(INFWNDOT
:m.mw LININOWOD ™ 1NELN0 R ONISHYd % WYHLS INdNE b= 013 rm.mv
| ONISHYd TIavSNIY TSN LY INWNo0a |
.] ¢ N N 5
Gil Ol S0l Lol

U.S. Patent Apr. 9, 2019 Sheet 2 of 11 US 10,255,280 B2

206~ APPLICATION | oo o | APPLICATION 208

220~]" oBSERVER MANAGER

210" 230~_PARSER CONTROLLER

240~ PARSERS

FIG. 2C

262~ 206~ APPLICATION APPLICATION |~ 208 | ~268

250

220~ OBSERVER MANAGER

210" 2301 PARSER CONTROLLER

9401 PARSERS

FI1G. 2D

U.S. Patent

Apr. 9,2019 Sheet 3 of 11

302~

APPLICATION
370~ TRANSLATION SERVICE

380

OBSERVER foco| OBSERVER

¢ N
382 388

320
™

OBSERVERABLE/INVERSION
OF CONTROL (I0C) LAYER

CBSERVER
MANAGER

PATTERN
/ N
322 324

!
OBSERVER z
DESIGN

PARSER CONTROLLER LAYER

SARSER PARSER
CONTROLLER | | CONTROLLER
| SPECIFICATION

/ N
332 334

340 N

N 330

PARSER IMPLEMENTATIONS LAYER

PARSER oo PARSER

/ N
342 348

FI1G. 3

US 10,255,280 B2

US 10,255,280 B2

Sheet 4 of 11

Apr. 9,2019

U.S. Patent

v 'Dld

00¥

) 4
- .w,wz_mm<a N Om e
w . Wiz
SATIOULNOD H35MYd OL (SHOvETIVO v 7 Evy
WYZILS LNdNI DNISHYd aiss
MIAYT SNOLLYINTWT Tl MMy
8
k2
1% 4 1%% wmw
N\ \ /
{EHMOVETIYD {ShdISHYd CENINNE LI {S143SHYd JLYIHdOHAdY ~_oeh
MASHYL 85300ud JLVILNVLISNI ININMALIA
HAAYTHITIOULNGD H3SHYd
&
g
80% L0V GOy £ov Loy
N N 4 / Z
[Shigayasgo ol (SINCILVOIAILON AT
{SINOIULYOLILLON ONISHYd Ma%%ﬁ% wawmwwwo LN ozp
SNISHYD HOLYSIO FLYHANTD INIOTY
HIAYT D0 TOMINGD 40 NOISHIANI/TIEVHIANISHED

US 10,255,280 B2

Sheet 5 of 11

Apr. 9,2019

U.S. Patent

¢ Did
e ——————
w Ops ~ | (L HAsHYd) SNOLLY ANIWS T L HsHYd M
_ e WasHyd D HasHVd SNOYA CLyasdvd D ||
| |
l 0eg~] SNOLLYAINIWT TN HISHYd HIAYT HISHY 3LYINAOddY _
w 31VuVSIO STZITYNON HITIOHINOD HISHYd SILVIINYLSN m
| pzs NM3L1Yd NDISIa _

™ i
| HIAYT D0 1EVHIAYISED NTANISE0 SOV |
e e ———————— g e o w— |
) R
SNOILYDILON 0i8

H31vdSid

{ 38uvd

z05 "

7

w1 € HIAMIREQ

¢ HAME5E0

&

SNOLLYOHILON
ONISHYd S0
AL HEANESE0

SMIVE VD
dAHESE0

b dEAHEEE0

¥

ONISHY JEVILINI
OLAOHLIN 3OVAREINI M3AYT 001 OL ¥3LSIOT
NASHY IHOAN! SUIANISTO TLVLNVISNI
,,,,, ONISHYd | SHIANISEC |
NID3E HOVLLY
NOLLYOFTddY

WYALS LNANEATdNS
HHOMINYHL FLVILNVLISN]

ANJNNCHIANG
4135

US 10,255,280 B2

Sheet 6 of 11

Apr. 9,2019

U.S. Patent

IS {Jerepdn: {Jejepdns {}eepdns {aepdns {lopspdny
Jsundeaud ssypdgdes usijessusneiusyasuyny UonIeionAaYAL uoposgonieuyd
{iepepdns {sepdna {}erepdne {iorepdna {ierepdna
opidsi iendsios uoposjjophaydeg uoyseyioniayias uoyoajeneyutedy
_ i | i
{Yeyepdna+
Bunideasaeur
Bumndgrissepr
! UOROBIOTASALISRISIE (jerepdn
- uoaaonAswsasu | | Uojoslionieyyedxisale-
} Joasesanbusig Jepuerien JSipUeHY
(alangBuisie : welgns whoslongusisiBale {itepdny {yerepdns
Buwg : Buipoous- Bupdgdesisaisi- bumdgipeisaisiur
Buug : o) uonsgonieydessaut uonesonAeypeseelsr
weaggindul | sapuedes Mejpuelias
1BSIBgRIRAISRID } |
_‘ i
I {IsianiesaDAmous
M; .M % fieesanur u *leaiseqry U eARIBAIBSOR Ul LOBLE:
m w _ *
H Goneisussebueyaiuy: ! welangBuisieq {Ippe+
| i SetURYRISUY & |
i i &
| S19L | (erpdns UOLRIBI0T B1R8IBI
i 10sse0ld0 | | SR
b o e e T SjaEAIRSqO R eAR] Jansesan mneas]

US 10,255,280 B2

Sheet 7 of 11

Apr. 9,2019

U.S. Patent

L D14

{

{eBuByieuBIS g - m e e JURULG 0 Wa)RAS
3 sbusyossguuess ploa oggnd
{

‘edfi~adA | pe

{{p-sdAiheb eadh ipes add | BiBOIDTIES - e - JUBULG 0 LURIRAG
}Hedhy baiadd Lereqipaes mos oggnd
{

${BSIBUDUB g~ mmmm s Sunuud motusieAs
Hissiedpue poa siand
{

{,9SBJUBIS - - Jupuud ino we)sis
Hzsieduers pioa 2gnd
{

{

{

{1V genipaluswesb elequswBesipe+, 0VST PlOARISS,
+{}'1°0) snEauswepeb sleguswhogIpe +, 80vS pUSRUSS, Jupuud o wWeisAS
vl eseosioubisienbe Be puswibasi
iz Jesensscubisienba (| -odf pipolieb-sedi Lipsli
| (Be puswless, pipwilas, Jupuud o weisis
) Bepebepauswbesips = Be uswbes Buwg
() wiswiBagiefuepuetips = memuusuilogine weruswbegias
‘Bae (ajpuerips) = JepuBHIPS JBipUEHPI
VB nelon ‘o sjqeriesa) sjepdn mos oygnd
apLIBAD
0= edf ype Jebauy
} ienssq0buisie] SpUSIXS JBAIRSOITIAN 52 sgnd

US 10,255,280 B2

Sheet 8 of 11

Apr. 9,2019

U.S. Patent

2 Dld

(yooes pomgiuud e
}oo{e uondemegi ymen {
' (Jesied iesieBi0RAIBSQ0
103 Juluud e weisAg

oA

NOLLOFTION AT IGT LSTHTINI DNISHY S i8siB oigeIanIasq) tsnesqOigasulyoene (ohet sioslgngbuisied
Jspuerppg selgns Busiedby . {sisesoun) spoelngiebuesmJeigeaesto = spefgngbusied «oelancbusedsisn

sHoposloDAeyvey NOLLOFTION AN 107 ISTYAINI SNISHY S Jesies|qealesq)) ppe sisaiejul
{)<BuiigsisiiAeiny Mau = sis0lolll <BUNSHISTT
H{) IpAlRSOOICIAN MaU = ISABSTOICAN JAasaOIaIAN

{Buipoous TLND; ‘WBSISE * JeSIB BIUBAISSGQ),) I85IB4BI0RAIBST)) MBU = JBSIBLSIBAIBSTO JaSIEda|qeaasay
} (Buipoous Bisg euuo) Bug ‘Weslice wirsRSIdUl 730D DIoA olgnd

{21, Swodepel L, |, LOVHIOR.) srTse shely} <BugsisiAeny meu = sadAjips <Bugsisndely

} ieddesppaoiiegBuisied ssep ajgnd

U.S. Patent Apr. 9, 2019 Sheet 9 of 11 US 10,255,280 B2

FIG. 9

EDI
INFO: tgparsing Logger configured
------------ >slartParse
w5t E NiCOAING Type:UTF-8: Eight-bit Unicode Transformation Format
------------ >setbdiDataType:X12
------------ >startinterchangs

segmentiSA
senderid_ISA06 : PARTYBOCO Jreceiverid_ISAQDS : PARTYAGD
------------ >startGroup

segment: GBS
............ >startTransaction

segmentST
segment:BEG
segmentCUR
segment TAX
segmentFOB
segmentN1
segmentPER
segmentN1
segmentPER
segmentN1
segmentPER
segment:N1
segmentN1
segment PO
segment.PID
sagment.SCH
segmentPO1
segment:PiD
segment:SCH
segmentPO1
segment:PID
segment.SCH
segmentCTT
segment AMT
------------ »endTranaction
segmentSE
------------ >endGroup
segment.GE
segmentiEA
e INtEIChANGE Char count: 878
------------ »endParse

US 10,255,280 B2

Sheet 10 of 11

Apr. 9,2019

U.S. Patent

HIAYT(S191) IDAHIS NOILYISNYHL 91

e L L L L L o1
01 "OId S ~ vl !
M DY0L SMISHY HISHYA 2001 IVS e M
. ¢ § pnyang pon 6 2 1 EO.—-@DU
| o | 213 'ONMEALS 'SI39 “L7H 'YOA DNISSII0N |
i QIR0 VLYAVLIN ON U0 SHIASHY TIEVIVAY HIHLO |
w YIYAYLIN INOS STUINDIY N vIP— |
M . 2401 w
- SHISHY
m ¥ 1 HISHYA 21X ONILSXS M
SuISHYD SHISUYd DOC-TX :
M NOLSNO WOLSNO 30UN0S NIJO H35uvd Lav4di03 M
S¥0L 8v¥0l |
m Q N . 3 SHOVETIVO GNY NOLLYLLNVLSNI M
| wasuve || w3swvd || WoLvnwAZ || sLyweod T18VZINDOOIY NMONYTIM | — V0L m
(1] 24d40n |} Adddon || HLYdX WX HIZINDOOT LYIRIOA LN SH3SAvd ONILSIX3 |
M HLYdX/ INTWOIS/THOOY H3d 'SHOVETIVO ONIAVIMIS § T NOIULYILNYLSN M
[0804~ HAAY T HETIOMLNOD HESHvd |
m |
| 020k~ HIAVT OOV TEVHIAUISE0 |
e T T T T T T T T T T T I T T T T S T T T T I I T sl
A HAANISHO i “B'8 SNOILYDITANd
GLOL SHOVETIVO OIS EMM W%mwmma‘mﬁzm ONY NOLLYHLSIOT
| rrmosemssoesoomsssesooesmmsssessoeons eSS SRRSO OR SRRSO e .
i !
| GEGT |NOLVHENIO MONAIX | | HALLNGS Add HALNGS | 3LINGS [y verion A9 444 || NOLLOETIO0 AD A4 1]
| 444 dvs m
] suzauaseo . - : — |
m SHIAISEO IUNLNA || YALLNGSIG3 || NOLLOTTIOO ABM VS || NOILOTTION AD I3 | | NOLLOTTIOO ADI X | 1)
T o T T T T T T I I T T I I T I S T T I T T T T I T i}
omm } s101WoN G003
FAV?

U.S. Patent Apr. 9, 2019 Sheet 11 of 11 US 10,255,280 B2

1190
N
FIRST ENTERPRISE ENS;TEE%%%E
COMPUTER COMPUTER
M2 11201 — 11150 1115
124~ 2am o raw 41154
1128~ 0 . M4 o 11158
TRADING GRID
COMPUTER
. A CPY
1116~ 160 oM
116821
1164-1__RAY
1166-"T__""
1168J¢"‘ 3/0

US 10,255,280 B2

1
UNIVERSAL PARSING FRAMEWORK
SYSTEMS AND METHODS

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This is a conversion of and claims a benefit of priority
from U.S. Patent Application No. 62/312,088, filed Mar. 23,
2016, entitled “SYSTEMS, METHODS AND FRAME-
WORK FOR UNIVERSAL PARSING,” the entire disclo-
sure of which is fully incorporated by reference herein for all
purposes.

TECHNICAL FIELD

This disclosure relates generally to data processing in a
network computing environment. More particularly, this
disclosure relates to an extensible parsing framework for
processing data streams and systems and methods imple-
menting same.

SUMMARY OF THE DISCLOSURE

In this disclosure, a Trading Grid or TG refers to a hosted
process integration platform such as the OpenText GXS
Trading Grid®. The Trading Grid operates in a cloud
computing environment to facilitate the real-time flow or
exchange of information between disparate entities such as
enterprises regardless of standards preferences, spoken lan-
guages, or geographic locations. Accordingly, the Trading
Grid may also be referred to as an electronic information
exchange platform.

The Trading Grid may be embodied on server machines
that support an electronic communication method referred to
as the Electronic Data Interchange (EDI) used by enterprise
computers that are independently owned and operated by
various entities. To enable these entities to exchange docu-
ments electronically in a secure, fast, and reliable manner,
the Trading Grid provides multiple managed services such
as translation services, format services, copy services, email
services, document tracking, messaging, document transfor-
mation (for consumption by different computers), regulatory
compliance (e.g., legal hold, patient records, tax records,
employment records, etc.), encryption, data manipulation
(e.g., validation), etc. to the enterprise computers.

Embodiments disclosed herein are directed to an exten-
sible parsing framework that can support various applica-
tions and managed services alike in the Trading Grid.
Recognizing that the Trading Grid is uniquely positioned to
process data/documents from various entities that utilize the
Trading Grid, the extensible parsing framework can extract
information from all the input streams. The extracted infor-
mation can provide useful insight as to the universality for
all of the data flowing through the Trading Grid among
trading partners (entities). For example, analytics can be run
on the extracted information to understand the semantics of
all the documents being traded on the Trading Grid at a
given time. An authorized user may, via a web based
interface, view a representation of a document and indicate
what field(s) or key(s) should be parsed out (extracted) and
stored in a central metadata repository for use by down-
stream service(s). Such reusable parsing components are
outputs of metadata-driven parsing. Additionally or alterna-
tively, parsing can be driven by business document defini-
tion (BDD).

In some embodiments, a parsing framework may include
an observerable/inversion of control (I0C) layer, a parser

20

25

30

35

40

45

50

55

60

65

2

controller layer, and a layer of various parser implementa-
tions. An observer manager may reside at the IOC layer and
communicates with an application. A parser controller may
reside at the parser controller layer and communicates with
the various parser implementations. Interfaces among these
layers may be defined and formalized via callback methods.

In some embodiments, a process flow in the parsing
framework may include receiving, by the observer manager,
an input stream, format information on the input stream, and
programmatic control from an application. The application
may be associated with observers, each of which may be
associated with a function of the application. The observers
are instantiated by the application and then attached to the
parsing framework (e.g., by registering with the observer
manager).

The observer manager communicates the input stream and
the format information to the parser controller which, in
turn, determine which parser(s) should be instantiated based
at least in part on the format information on the input stream.
The parser controller then instantiates the appropriate
parser(s). The instantiated parser(s) operate to parse the
input stream in a single pass, during which the observer
manager may: determine which observer(s) is/are to be
notified based at least in part on an output from the at least
one parser; generate a parsing notification(s) accordingly;
and dispatching the parsing notification(s) directly to the
observer(s) thus determined. The outcome (e.g., parsed data)
from the parser(s) may comprise reusable parsing compo-
nents such as a record, a field of the record, a file, or a
segment of the file that can be reused by the application.

In the parsing framework, the parser controller separates
the parsers from the observer manager. Likewise, the
observer manager decouples the observers from the parsers.
This structure insulates the parsers from an application that
utilizes them.

In some embodiments, the parsing framework is instan-
tiated by the application running on a server machine. In
some embodiments, the application may run on a multi-
tenant platform in a cloud computing environment. In some
embodiments, the application may be one of a plurality of
applications running on the Trading Grid. In some embodi-
ments, the parsing framework may be part of a set of
lightweight library that can be used by the application and/or
other applications representing different technologies run-
ning on the Trading Grid.

In one embodiment, a system may comprise at least one
processor, at least one non-transitory computer-readable
storage medium, and stored instructions translatable by the
at least one processor to implement a process flow substan-
tially as described herein. Another embodiment comprises a
computer program product having at least one non-transitory
computer-readable storage medium storing instructions
translatable by at least one processor to perform a method
substantially as described herein. Numerous other embodi-
ments are also possible.

Embodiments disclosed herein can provide many advan-
tages. For example, the reusable library framework can
easily extend parsing capability. Parsing is decoupled from
the ability to observe any collection or number of bits of
information on documents being parsed. This approach can
provide reusability for the parsers and eliminate the need to
hard code a program to parse and/or to connect one parser
to one observer.

These, and other, aspects of the disclosure will be better
appreciated and understood when considered in conjunction
with the following description and the accompanying draw-
ings. It should be understood, however, that the following

US 10,255,280 B2

3

description, while indicating various embodiments of the
disclosure and numerous specific details thereof, is given by
way of illustration and not of limitation. Many substitutions,
modifications, additions, and/or rearrangements may be
made within the scope of the disclosure without departing
from the spirit thereof, and the disclosure includes all such
substitutions, modifications, additions, and/or rearrange-
ments.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings accompanying and forming part of this
specification are included to depict certain aspects of the
invention. A clearer impression of the invention, and of the
components and operation of systems provided with the
invention, will become more readily apparent by referring to
the exemplary, and therefore non-limiting, embodiments
illustrated in the drawings, wherein identical reference
numerals designate the same components. Note that the
features illustrated in the drawings are not necessarily drawn
to scale.

FIG. 1 depicts a diagrammatic representation of a logic
flow for a parsing framework according to some embodi-
ments.

FIGS. 2A-2D depict diagrammatic representations of
example implementations of a parsing framework according
to some embodiments.

FIG. 3 depicts a diagrammatic representation of a parsing
framework according to some embodiments.

FIG. 4 depicts an example process flow for a parsing
framework according to some embodiments.

FIG. 5 depicts a flow diagram of an example embodiment
of an application with three observers and a parsing frame-
work with an observable layer, a parser controller layer, and
a parser implementations layer with four parsers according
to some embodiments.

FIG. 6 depicts example logical structures for an observer
layer of a parsing framework according to some embodi-
ments.

FIG. 7 provides an example of an observer snippet to print
segments of an input stream according to some embodi-
ments.

FIG. 8 provides an example of an attachment method for
registering an observer with a parsing framework according
to some embodiments.

FIG. 9 provides an example of a parsing outcome by a
parsing framework according to some embodiments.

FIG. 10 depicts a flow diagram showing an example of an
application with a plurality of observers and an example of
an extensible parsing framework with an IOC layer, a parser
controller layer, and a parser implementations layer with
various parsers according to some embodiments.

FIG. 11 depicts a diagrammatic representation of a dis-
tributed network computing environment where embodi-
ments disclosed can be implemented.

DETAILED DESCRIPTION

The invention and the various features and advantageous
details thereof are explained more fully with reference to the
non-limiting embodiments that are illustrated in the accom-
panying drawings and detailed in the following description.
Descriptions of well-known starting materials, processing
techniques, components, and equipment are omitted so as
not to unnecessarily obscure the invention in detail. It should
be understood, however, that the detailed description and the
specific examples, while indicating some embodiments of

20

25

30

35

40

45

50

55

60

65

4

the invention, are given by way of illustration only and not
by way of limitation. Various substitutions, modifications,
additions, and/or rearrangements within the spirit and/or
scope of the underlying inventive concept will become
apparent to those skilled in the art from this disclosure.

Referring to FIG. 1, in this disclosure, parsing refers to the
syntactic analysis of input stream 105 by parsing framework
110 to produce output stream 115. Specifically, parsing
framework 110 may operate to parse document 101 in input
stream 105 into reusable parsing component parts 120 that
can be stored via output stream 115. Reusable parsing
components 120 can be used/reused in a Trading Grid,
explained above. In some embodiments, parsing framework
110 operates at a level below an application layer. This is
further explained below. In some embodiments, parsing
framework may be extensible. This is also explained below.

Skilled artisans appreciate that an input stream can be
considered a programming event. Technically, a parser in
parsing framework 110 is not given a file name, nor does the
parser “open” a file to read. Rather, the parser is given an
input stream of data from a file that has already been opened
and the parser reads from the input stream. Accordingly,
from a programming perspective, it is a programmatically
readable object, rather than a file name, that is passed to the
parser and the parser can read from this object. In Java, such
an input stream is called Java.file.iostream. Java usually
comes with a package (e.g., a “java.io” package) that con-
tains input/output (I/O) classes to support the input and
output through bytes stream and file system. These 1/O
streams represent an input source and an output destination.
An application can open a file (e.g., document 101) and pass
input stream 105 to parsing framework 110 for the parser to
read. At this point, control of processing input stream 105 is
inverted from the application.

Each parser in parsing framework 110 performs a par-
ticular parsing function. They do not need to know how the
file is technically stored. Rather, once a parser is stated (e.g.,
by a parser controller, described below), it may perform a
particular analysis on the incoming data, break it into parts
according to a result of the analysis, perform callback
methods with its findings, and repeat this process until there
is nothing to read and no more callbacks need to be made,
at which point the parsing ends and control is returned to the
application. Many downstream activities can occur at this
point, for instance, creating output stream 115 from parsed
data and/or storing reusable segments 120 (e.g., segments
parsed from document 101) that can be reused by the
application in a file system.

Before discussing embodiments of parsing framework
110 in detail, examples of where parsing framework 110
may be implementing in various types of computing envi-
ronments maybe helpful. FIGS. 2A-2D depict diagrammatic
representations of non-limiting example implementations of
a parsing framework according to some embodiments.
Referring to FIG. 2A, in some embodiments, parsing frame-
work 210 may be instantiated by application 202 running on
a server machine in a Trading Grid (e.g., Trading Grid
computer 516 shown in FIG. 5). Parsing framework 210
may include observer manager 220, parser controller 230,
and parsers 240. These components are further described
below with reference to FIG. 3. As illustrated in FIG. 2B, in
some embodiments, parsing framework 210 may be embed-
ded in application 204 (e.g., as part of a library for appli-
cation 204). In some embodiments, parsing framework 210
may be part of a set of lightweight library that can be used
by applications 206 . . . 208 representing different technolo-
gies running on a Trading Grid, as illustrated in FIG. 2C. In

US 10,255,280 B2

5
some embodiments, applications 206 . . . 208 may be
delivered to enterprise computers 262 . . . 268 as managed

services provided by a Trading Grid operating on a multi-
tenant platform in cloud computing environment 250, as
exemplified in FIG. 2D. As described above, enterprise
computers 262 . . . 268 may be associated with disparate
entities that are trading partners that utilize the Trading Grid
to exchange information. Other implementations may also
be possible. Thus, FIGS. 2A-2D are meant to be illustrative
and non-limiting.

FIG. 3 depicts a diagrammatic representation of parsing
framework 310 according to some embodiments. In the
example shown, parsing framework may include an
observerable/inversion of control (IOC) layer 320, parser
controller layer 330, and various parser implementations at
layer 340. In some embodiments, layers 320, 330, and 340
represent coding layers of parsing framework 310. Inversion
of control refers to a software engineering principle in which
custom-written portions of a computer program receive the
flow of control from a generic framework. Unlike in libraries
or in standard user applications, the overall program’s flow
of control is not dictated by the caller, but by the framework.
Inversion of control is known to those skilled in the art and
thus is not further described herein.

In the example of FIG. 3, observer manager 322 may
reside at the IOC layer 320 and communicate with applica-
tion 302. Observer manager 322 may manage observer
design patterns 324 of observers 382 . . . 388 residing at
observer layer 380 of application 302. As illustrated in FIG.
3, observer layer 380 can be decoupled from translation
service 370 provided by application 302. Skilled artisans
appreciate that translation service 370 represents a non-
limiting example of a managed service provided by the
Trading Grid. Other managed services (e.g., key collection
service, splitting service, messaging services, mailbox ser-
vices, etc.) may also utilize parsing framework 310. Such
managed services and applications alike may require parsing
and may utilize parsing framework 310 for their parsing
needs. Furthermore, as discussed above, parsing framework
310 can be encapsulated in an independent lightweight
reusable library and need not be coupled to translation
service 370 in some implementations.

As illustrated in FIG. 3, TG services (e.g., translation
service 370) and observers (e.g., observers 382 . . . 388) at
the application layer are decoupled from the parsing com-
ponents (e.g., parsers 342 . . . 348) of parsing framework
310. Parsing framework 310 may store 10C/callback pat-
terns (e.g., observer design patterns 324) for use by appli-
cation 302, for instance, as part of a programming library for
application 302. In this disclosure, an observer design pat-
tern refers to a software design pattern in which an object
(which is also referred to as a “subject”) maintains a list of
its dependents (which are also referred to as “observers™)
and notifies them automatically of any state changes, often
by calling one of their methods.

In the example of FIG. 3, parser controller 332 may reside
at parser controller layer 330. Parser controller 332 may be
particularly configured for instantiating appropriate
parser(s) 342 . . . 348 at parser implementation layer 340. In
this disclosure, a parser refers to a software component
particularly programmed to analyze a document syntacti-
cally to look for certain information and let parsing frame-
work 310 know what it found. In some embodiments,
parsers 342 . . . 348 can be written to handle fixed-length
files, XML files, all various types (including future ones)
with different behaviors and formats.

20

25

30

35

40

45

50

55

60

65

6
In some embodiments, parser controller 332 can provide
a common interface to disparate parsers 342 . . . 348. For

example, parser controller 332 can convert or otherwise
process callback methods utilized by parsers 342 . . . 348
into a common form, if needed. That is, parsing framework
310 can provide two layers of separation—parser controller
332 can separate parsers 342 . . . 348 from observer manager
322 (and hence isolating parser implementation layer 340
from 10C layer 320) and observer manager 322 can separate
parser controller 332 from observers 382 . . . 388 (and hence
isolating observer layer 380 and application 302 from parser
controller layer 330 and parser implementation layer 340).

In some embodiments, parser controller 332 can be hard-
coded to include knowledge of parsers 342 . . . 348. In some
embodiments, a parser can be added via dependency injec-
tion. Dependency injection can allow parser controller 332
to be plugged into or otherwise registered with parser
controller 332. Such a registerable new parser may be
configured based at least in part on parser controller speci-
fication 334 such that the new parser can communicate and
interface with parser controller 332. By allowing an external
parser to dynamically plug into parser controller 332 (e.g.,
to replace an existing parser and/or to add a new parsing
functionality) by dependency injection, parsing framework
310 can be dynamically extensible to extend its parsing
capabilities.

Interfaces among layers 320, 330, and 340 may be defined
and formalized via callback methods that call into custom or
task-specific code. For example, in some embodiments,
parser controller 332 can communicate a callback from a
parser to observer manager 322. In turn, observer manager
322 may determine which observer at observer layer 380
should be notified. Appropriate observer(s) is/are awaken by
observer manager 322 whenever something the particular
observer(s) is/are interested is found. Different observers
can have different interests. It is possible that multiple
observers may be interested in the same information. If so,
observer manager 322 can broadcast the information found
to multiple observers at observer layer 380.

As skilled artisans can appreciate, at IOC layer 320,
control is inverted from application 302 to parsing frame-
work 310 so that parsing on an input stream can be per-
formed. This process flow is further described with reference
to FIG. 4.

In some embodiments, an application may instantiate a
parsing framework to begin process flow 400. This can be
any application that needs parsing done in the Trading Grid.
As discussed above, trading partners (e.g., represented by
enterprise computers 262 . . . 268 in F1G. 2D) may utilize the
Trading Grid to send electronic information to its partner(s).
This communication can be triggered by a backend system
at a Trading Partner (network). For example, an Enterprise
Resource Planning (ERP) System may send an ERP docu-
ment containing purchase orders (POs) to its vendors. The
Trading Grid is configured for receiving that ERP document
and sending it to an internal process (internal to the Trading
Grid) in which data services can be performed on the data
(e.g., POs) contained in the ERP document. For example, the
trading partner may want the POs tracked. Thus, for tracking
purposes, the Trading Grid may direct the ERP document to
the parsing framework. The parsing framework may parse
the POs (e.g., perform a syntactic analysis to understand the
structure of the POs) and create an audit record to track by
PO. The POs may be organized, sorted, packaged, and then
delivered to their respective destinations. The journey of an
electronic file through the Trading Grid can be referred to as
an itinerary. When an electronic file is received by the

US 10,255,280 B2

7

Trading Grid, an itinerary is created so the Trading Grid can
perform the desired data services and orchestrate each
electronic file’s journey from one trading partner to its
trading partner(s).

Many backend systems at the trading partners may be
communicatively connected to the Trading Grid. In addition
to ERP systems, any system that supports back-office appli-
cations can be backend systems operating in respective
trading partner networks. These systems may have disparate
application formats and/or data structures. Often parsing is
needed for the Trading Grid to understand the syntax and/or
encoding of the data sent by a backend system of a trading
partner such that the Trading Grid can provide the appro-
priate data services for the trading partner, for example, for
tracking purposes.

Parsing can also be needed to split the data sent by a
backend system. For instance, following the above example,
an ERP document may contain POs for multiple trading
partners in no particular order—a PO for trading partner A,
a PO for trading partner B, another PO for trading partner A,
a PO for trading partner X, etc. The parsing framework can
parse out these POs (e.g., breaking down the ERP data by
POs based on a syntactic analysis of the structure of the ERP
document). Through additional data services, the Trading
Grid can identify which PO is for what trading partner,
package the POs by trading partner, track them, and deliver
them.

As discussed above, the application can be any applica-
tion that needs parsing done in the Trading Grid. As a
non-limiting example, the application can be a Trading Grid
application that implements a managed service provided by
the Trading Grid. The application can run on a computer at
the client side or at the server side. In some embodiments,
the application runs on a server machine on the Trading
Grid.

The application can open a file that it want parsed and
make the initial call to the parsing framework. This creates
an input stream at the application layer and instantiates the
parsing framework. In some embodiments, the input stream
can be a Java input/output (I/O) stream supported by the
parsing framework.

The application can utilize observer design patterns (e.g.,
observer design patterns 324 shown in FIG. 3) to instantiate
observers needed to monitor the parsing of the input stream
by the parsing framework. There could be one or a thousand
observers for one application. Each observer can be config-
ured to be notified when an activity of interest occurs in the
parsing framework. However, there is no need to re-parse a
thousand (or multiple) times. The parsing framework can
notify all interested observers in one singe parsing pass.

The observers are registered with the parsing framework
(or, more specifically, with the observer manager at 10C
layer 420) and parsing is initiated. As an example, referring
to FIG. 5, these actions can be performed by application 502
via an “attach” method call and a “parse” method call to IOC
layer 520. From the perspective of the application, control of
process tlow 400 to parse the ERP document is inverted to
the parsing framework. From the perspective of the parsing
framework, process flow 400 begins with receiving an input
stream from the application (401) and registering observers
that are instantiated by the application (403) at IOC layer
420. With parsing initiation (405), process flow 400 moves
to parser controller layer 430 where a parser controller
operates.

Based on the format information on the input stream, the
parser controller can determine which parser handles the
type of document (e.g., text, word processing document,

20

25

30

35

40

45

50

55

60

65

8

spreadsheet, etc.) that the application is requesting to be
parsed (431). The parser controller can then instantiate the
appropriate parser(s) thus determined (433). The parsers at
parser implementations layer 440 need not have any knowl-
edge of the name of the document opened by the application
at the application layer. In this way, disparate parser imple-
mentations can be normalized and decoupled from the
observers and from the application layer generally. This
separation provides reusability for the parsers and eliminates
the need to hard code a program to connect one parser to one
observer.

At parser implementations layer 440, the parser(s) thus
instantiated by the parser controller may operate to parse the
input stream (e.g., data from an ERP, EDI, SAP, XML, UDF
document, etc.) in a single pass (441). The parser does not
open the file directly, but is reading the input stream created
at the application layer. While the parser(s) is/are performing
the single pass of parsing, the findings (parsing outcomes)
are communicated by the parsers to the parser controller at
parser controller layer 430 via callbacks (443). The parser
controller, if necessary, can process (e.g., convert, normal-
ize, etc.) the callbacks in a uniform manner and communi-
cate same to the observer manager at IOC layer 420 (435).
The observer manager can determine which observer(s)
is/are to be notified of the parsing outcomes and generate
parsing notification(s) accordingly (407). The observer man-
ager can dispatch the parsing notification(s) directly to the
observer(s) thus determined (409). This process continues
until parsing is completed (445). The observer manager can
send the parsing notification(s) directly to the observer(s)
using the callback method(s) attached (by registration) to the
observer(s). In some embodiments, callbacks can also be
normalized to hide complexity of different data types/struc-
tures from observers. Once awaken by a callback, each
observer can start to handle the outputs and communicates
with the application regarding same. Once parsing is com-
pleted, control is no longer inverted and the application can
proceed, for instance, to package the parsed data and make
a call to a target destination to deliver the package of data.

Example Use Cases

FIG. 5 depicts a flow diagram of an example embodiment
of application 502 with three observers and parsing frame-
work 510 with IOC layer 520, parser controller layer 530,
and parser implementations layer 540 with four parsers.
These components may implement process flow 400
described above with reference to FIG. 4 to support TG
services (e.g., Trading Grid (TG) Key Collection Service,
TG Splitting Service, etc.) that require parsing. In some
embodiments, parsing framework 510 may be encapsulated
in an independent lightweight reusable library (not coupled
to the TG Translation Service) and have the ability to
“plug-in” various parsing assets and implementations.

In some embodiments, the parsing service may be
exposed as a JAR (Java Archive—a package file format for
distribution). Interfaces between the layers are defined and
formalized for invocation and callbacks. Furthermore, the
parsing framework requires as little metadata and provision-
ing parameters as possible. The streaming callback imple-
mentation can provide a technical effect of low memory
consumption. As a non-limiting example, a parsing frame-
work distribution file “ParsingService jar” may take up only
about 530 KB in size.

Embodiments of a parsing framework disclosed herein
can provide many advantages. For example, it can facilitate
registered observers to perform processing as parsing is
being performed. It can provide an observer to “request”
notification of multiple “interests” and for multiple observ-

US 10,255,280 B2

9

ers to be notified of the same “interest” in a single parse. It
can provide inter-observer notifications as well. Further-
more, the observer controller, and the parser controller, can
prevent coupling of the observers directly to the parsers.
Inter-observer notifications can be done leveraging external
interfaces (XIF).

The parsing framework provides a signature of normal-
ized callbacks for common/logical structures and processing
markers (e.g., “Start Parse,” “Start Interchange,” “Start
Group,” “Start Transaction,” “End Parse,” “End Inter-
change,” “End Group,” “End Transaction”). Such logical
structures can help with various processing needs such as
generating XIF levels and counts and allows for easy
implementation of observers that are irrespective of format
(e.g., count Interchanges, transactions, etc. regardless of
format). Additionally, for “well known formats such as EDI
and SAP, the parsing framework provides callback objects
which are format-specific (e.g., Segment and Elements
objects in EDI parsing).

Example logical structures for an observer layer are
illustrated in FIG. 6. An example of an EDI observer
“MyEDIObserver” snippet to print all the segments of an
EDI stream is shown in FIG. 7. At runtime, this EDI
observer can be attached using an “attach()” method. An
example of this method is shown in FIG. 8. An example of
parsing outcome from the EDI stream is shown in FIG. 9. As
illustrated in FIG. 10, various types of parsers (e.g., SAP
Idoc parser, user defined function (UDF) parser, XML
parser, etc.) can be utilized to parse stream in various
formats.

FIG. 10 depicts a flow diagram showing an example of
application 1002 with observers 1080 and an example of
extensible parsing framework 1010 with 10C layer 1020,
parser controller layer 1030, and parser implementations
layer 1040. These components may implement process flow
400 described above with reference to FIG. 4. In the
example of FIG. 10, observers 1080 are set up to observer
multiple functions performed by parsing framework 1010,
including key collection and splitting. These are explained
below.

Key collection—entities may log in to a portal (e.g., a web
based interface) to inquire information on specific document
types such as Invoices, Purchase Order, etc. For instance,
when did a particular Purchase order and/or Invoice go
through, how many Purchase Orders are associated with a
sender (e.g., via a sender identifier or ID), etc. The parsing
framework disclosed herein can collect keys/fields such as
sender 1D, receiver 1D, invoice ID, Purchase Order 1D,
and/or secondary collection—collection date/time, etc. that
can be used for analytics.

Splitting—some documents are split into logical chunks
for processing. An Observer can be written to collect all the
records for an entity up to certain point and then write
another file. The parsing framework allows multiple observ-
ers doing different things to the same document in one
parsing. Parsers are decoupled from the observers and have
no knowledge why they are instantiated to perform the
parsing. This allows the observers to function independently
of the reasons for parsing.

In the example of FIG. 10, parsers operating at layer 1040
include hardwired parsers 1042 and extensible parsers 1048.
As discussed above, some embodiments of a parsing frame-
work disclosed herein can be extended to include new
customer parser(s) and/or to replace existing parser(s). That
is, configurable dependency (metadata) injection may be
used, alternatively or additionally, to hard-coded instantia-
tions of observers, subjects, and parsers.

20

25

30

35

40

45

50

55

60

65

10

In some embodiments, dependency injection can be
achieved by producing generic or universal representation
(e.g., Document Object Model or DOM) of Java objects that
can be readily, easily, and natively consumed by Java
programs. Each DOM is a representation of a document.
DOM is more than a text file. It represents a structure of a
document. For example, an EDI document may be repre-
sented by a DOM has a name of a person. Under that name
there maybe five records that are address information. For
each address, there may be a new name to that record. Thus,
a DOM structure is a much richer representation of a
document which can be serialized and consumed by any
Java application very easily via an API. In the example of
FIG. 10, parsers 1048 would need some metadata succinctly
defined for a document in order to create a DOM, for
instance, for XML and UDF parsing, while parsers 1042
would not require any metadata.

The parsing framework can support the Trading Grid such
that parsing only needs to be done once and can feed (e.g.,
pass the same DOM) to all services on the Trading Grid.
This eliminates the need to perform parsing on a document
multiple times and can significantly reduce the processing
time.

Other implementations are also possible. For example, a
service may convert an Excel (.xlsx) data to “comma-
separated values” (CSV) files, so there can be an Excel
parser providing an outcome to CSV observer. Furthermore,
a service may insert header records into a header-less UDF
file.

FIG. 11 depicts a diagrammatic representation of a dis-
tributed network computing environment where embodi-
ments disclosed can be implemented. In the example illus-
trated, network computing environment 1100 includes
network 1114 that can be bi-directionally coupled to first
enterprise computer 1112, second enterprise computer 1115,
and Trading Grid computer 1116. Trading Grid computer
1116 can be bi-directionally coupled to data store 1118.
Network 1114 may represent a combination of wired and
wireless networks that network computing environment
1100 may utilize for various types of network communica-
tions known to those skilled in the art.

For the purpose of illustration, a single system is shown
for each of first enterprise computer 1112, second enterprise
computer 1115, and Trading Grid computer 1116. However,
within each of first enterprise computer 1112, second enter-
prise computer 1115, and Trading Grid computer 1116, a
plurality of computers (not shown) may be interconnected to
each other over network 1114. For example, a plurality of
first enterprise computers 1112 and a plurality of second
enterprise computers 1115 may be coupled to network 1114.
First enterprise computers 1112 may include data processing
systems operating at the backend of an enterprise network
and communicating with Trading Grid computer 1116 over
network 1114. Second enterprise computers 1115 may
include data processing systems operating at the backend of
an enterprise network and communicating with Trading Grid
computer 1116 over network 1114.

First enterprise computer 1112 can include central pro-
cessing unit (“CPU”) 1120, read-only memory (“ROM”)
1122, random access memory (“RAM”) 1124, hard drive
(“HD”) or storage memory 1126, and input/output device(s)
(“I/O0”) 1128. /O 1129 can include a keyboard, monitor,
printer, electronic pointing device (e.g., mouse, trackball,
stylus, etc.), or the like. First enterprise computer 1112 can
include a desktop computer, a laptop computer, a personal
digital assistant, a cellular phone, or nearly any device
capable of communicating over a network. Second enter-

US 10,255,280 B2

11

prise computer 515 may be similar to first enterprise com-
puter 1112 and can comprise CPU 1150, ROM 1152, RAM
1154, HD 1156, and I/O 1158.

Likewise, Trading Grid computer 1116 may include CPU
1160, ROM 1162, RAM 1164, HD 1166, and I/O 1168.
Trading Grid computer 1116 may include one or more
backend systems configured for providing a variety of
services to first enterprise computers 1112 over network
1114. These services may utilize data stored in data store
1118. Many other alternative configurations are possible and
known to skilled artisans.

Each of the computers in FIG. 11 may have more than one
CPU, ROM, RAM, HD, 1/O, or other hardware components.
For the sake of brevity, each computer is illustrated as
having one of each of the hardware components, even if
more than one is used. Each of computers 1112, 1115, and
1116 is an example of a data processing system. ROM 1122,
1152, and 1162; RAM 1124, 1154, and 1164; HD 1126,
1156, and 1166; and data store 1118 can include media that
can be read by CPU 1120, 1150, or 1160. Therefore, these
types of memories include non-transitory computer-readable
storage media. These memories may be internal or external
to computers 1112, 1115, or 1116.

Portions of the methods described herein may be imple-
mented in suitable software code that may reside within
ROM 1122, 1152, or 1162; RAM 1124, 1154, or 1164; or HD
1126, 1156, or 1166. In addition to those types of memories,
the instructions in an embodiment disclosed herein may be
contained on a data storage device with a different computer-
readable storage medium, such as a hard disk. Alternatively,
the instructions may be stored as software code elements on
a data storage array, magnetic tape, floppy diskette, optical
storage device, or other appropriate data processing system
readable medium or storage device.

Those skilled in the relevant art will appreciate that the
invention can be implemented or practiced with other com-
puter system configurations, including without limitation
multi-processor systems, network devices, mini-computers,
mainframe computers, data processors, and the like. The
invention can be embodied in a computer or data processor
that is specifically programmed, configured, or constructed
to perform the functions described in detail herein. The
invention can also be employed in distributed computing
environments, where tasks or modules are performed by
remote processing devices, which are linked through a
communications network such as a local area network
(LAN), wide area network (WAN), and/or the Internet. In a
distributed computing environment, program modules or
subroutines may be located in both local and remote
memory storage devices. These program modules or sub-
routines may, for example, be stored or distributed on
computer-readable media, including magnetic and optically
readable and removable computer discs, stored as firmware
in chips, as well as distributed electronically over the
Internet or over other networks (including wireless net-
works). Example chips may include Electrically Erasable
Programmable Read-Only Memory (EEPROM) chips.
Embodiments discussed herein can be implemented in suit-
able instructions that may reside on a non-transitory com-
puter readable medium, hardware circuitry or the like, or any
combination and that may be translatable by one or more
server machines. Examples of a non-transitory computer
readable medium are provided below in this disclosure.

ROM, RAM, and HD are computer memories for storing
computer-executable instructions executable by the CPU or
capable of being compiled or interpreted to be executable by
the CPU. Suitable computer-executable instructions may

20

25

30

35

40

45

50

55

60

65

12

reside on a computer readable medium (e.g., ROM, RAM,
and/or HD), hardware circuitry or the like, or any combi-
nation thereof. Within this disclosure, the term “computer
readable medium” is not limited to ROM, RAM, and HD
and can include any type of data storage medium that can be
read by a processor. Examples of computer-readable storage
media can include, but are not limited to, volatile and
non-volatile computer memories and storage devices such as
random access memories, read-only memories, hard drives,
data cartridges, direct access storage device arrays, magnetic
tapes, floppy diskettes, flash memory drives, optical data
storage devices, compact-disc read-only memories, and
other appropriate computer memories and data storage
devices. Thus, a computer-readable medium may refer to a
data cartridge, a data backup magnetic tape, a floppy dis-
kette, a flash memory drive, an optical data storage drive, a
CD-ROM, ROM, RAM, HD, or the like.

The processes described herein may be implemented in
suitable computer-executable instructions that may reside on
a computer readable medium (for example, a disk, CD-
ROM, a memory, etc.). Alternatively, the computer-execut-
able instructions may be stored as software code compo-
nents on a direct access storage device array, magnetic tape,
floppy diskette, optical storage device, or other appropriate
computer-readable medium or storage device.

Any suitable programming language can be used to
implement the routines, methods or programs of embodi-
ments of the invention described herein, including C, C++,
Java, JavaScript, HTML, or any other programming or
scripting code, etc. Other software/hardware/network archi-
tectures may be used. For example, the functions of the
disclosed embodiments may be implemented on one com-
puter or shared/distributed among two or more computers in
or across a network. Communications between computers
implementing embodiments can be accomplished using any
electronic, optical, radio frequency signals, or other suitable
methods and tools of communication in compliance with
known network protocols.

Different programming techniques can be employed such
as procedural or object oriented. Any particular routine can
execute on a single computer processing device or multiple
computer processing devices, a single computer processor or
multiple computer processors. Data may be stored in a single
storage medium or distributed through multiple storage
mediums, and may reside in a single database or multiple
databases (or other data storage techniques). Although the
steps, operations, or computations may be presented in a
specific order, this order may be changed in different
embodiments. In some embodiments, to the extent multiple
steps are shown as sequential in this specification, some
combination of such steps in alternative embodiments may
be performed at the same time. The sequence of operations
described herein can be interrupted, suspended, or otherwise
controlled by another process, such as an operating system,
kernel, etc. The routines can operate in an operating system
environment or as stand-alone routines. Functions, routines,
methods, steps, and operations described herein can be
performed in hardware, software, firmware, or any combi-
nation thereof.

Embodiments described herein can be implemented in the
form of control logic in software or hardware or a combi-
nation of both. The control logic may be stored in an
information storage medium, such as a computer-readable
medium, as a plurality of instructions adapted to direct an
information processing device to perform a set of steps
disclosed in the various embodiments. Based on the disclo-

US 10,255,280 B2

13

sure and teachings provided herein, a person of ordinary
skill in the art will appreciate other ways and/or methods to
implement the invention.

It is also within the spirit and scope of the invention to
implement in software programming or code an of the steps,
operations, methods, routines or portions thereof described
herein, where such software programming or code can be
stored in a computer-readable medium and can be operated
on by a processor to permit a computer to perform any of the
steps, operations, methods, routines or portions thereof
described herein. The invention may be implemented by
using software programming or code in one or more digital
computers, by using application specific integrated circuits,
programmable logic devices, field programmable gate
arrays, optical, chemical, biological, quantum or nanoengi-
neered systems, components and mechanisms may be used.
The functions of the invention can be achieved by distrib-
uted or networked systems. Communication or transfer (or
otherwise moving from one place to another) of data may be
wired, wireless, or by any other means.

A “computer-readable medium” may be any medium that
can contain, store, communicate, propagate, or transport the
program for use by or in connection with the instruction
execution system, apparatus, system, or device. The com-
puter readable medium can be, by way of example only but
not by limitation, an electronic, magnetic, optical, electro-
magnetic, infrared, or semiconductor system, apparatus,
system, device, propagation medium, or computer memory.
Such computer-readable medium shall be machine readable
and include software programming or code that can be
human readable (e.g., source code) or machine readable
(e.g., object code). Examples of non-transitory computer-
readable media can include random access memories, read-
only memories, hard drives, data cartridges, magnetic tapes,
floppy diskettes, flash memory drives, optical data storage
devices, compact-disc read-only memories, and other appro-
priate computer memories and data storage devices. In an
illustrative embodiment, some or all of the software com-
ponents may reside on a single server computer or on any
combination of separate server computers. As one skilled in
the art can appreciate, a computer program product imple-
menting an embodiment disclosed herein may comprise one
or more non-transitory computer readable media storing
computer instructions translatable by one or more processors
in a computing environment.

A “processor” includes any, hardware system, mechanism
or component that processes data, signals or other informa-
tion. A processor can include a system with a central
processing unit, multiple processing units, dedicated cir-
cuitry for achieving functionality, or other systems. Process-
ing need not be limited to a geographic location, or have
temporal limitations. For example, a processor can perform
its functions in “real-time,” “offline,” in a “batch mode,” etc.
Portions of processing can be performed at different times
and at different locations, by different (or the same) pro-
cessing systems.

As used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having,” or any other varia-
tion thereof, are intended to cover a non-exclusive inclusion.
For example, a process, product, article, or apparatus that
comprises a list of elements is not necessarily limited only
those elements but may include other elements not expressly
listed or inherent to such process, product, article, or appa-
ratus.

Furthermore, the term “or” as used herein is generally
intended to mean “and/or” unless otherwise indicated. For
example, a condition A or B is satisfied by any one of the

2 <

20

25

30

35

40

45

50

55

60

65

14

following: A is true (or present) and B is false (or not
present), A is false (or not present) and B is true (or present),
and both A and B are true (or present). As used herein, a term
preceded by “a” or “an” (and “the” when antecedent basis is
“a” or “an”) includes both singular and plural of such term,
unless clearly indicated otherwise (i.e., that the reference “a”
or “an” clearly indicates only the singular or only the plural).
Also, as used in the description herein, the meaning of “in”
includes “in” and “on” unless the context clearly dictates
otherwise.

It will also be appreciated that one or more of the elements
depicted in the drawings/figures can also be implemented in
a more separated or integrated manner, or even removed or
rendered as inoperable in certain cases, as is useful in
accordance with a particular application. Additionally, any
signal arrows in the drawings/figures should be considered
only as exemplary, and not limiting, unless otherwise spe-
cifically noted. The scope of the disclosure should be
determined by the following claims and their legal equiva-
lents.

What is claimed is:
1. A method, comprising:
receiving, by a parsing framework embodied on non-
transitory computer memory, an input stream from an
application, the application having observers, each
observer associated with a function of the application,
the parsing framework comprising an observer man-
ager, a parser controller, and a plurality of parsers, the
observation manager structurally insulating the plural-
ity of parsers from the application and the observers,
wherein the application attaches the observers to the
parsing framework and initiates parsing of the input
stream by the parsing framework and wherein control
of the parsing is inverted to the parsing framework;

determining a parser of the plurality of parsers based at
least in part on a format of the input stream, the
determining performed by the parser controller;

instantiating the parser thus determined, the instantiating
performed by the parser controller;
parsing the input stream, the parsing performed by the
parser determined by the parser controller;

determining which of the observers is to be notified of an
outcome from the parsing, the determining performed
by the observer manager;

generating at least one parsing notification, the generating

performed by the observer manager; and

dispatching the at least one parsing notification directly to

any or all of the observers determined by the observer
manager of the parsing framework to be notified of the
outcome from the parsing, the dispatching performed
by the observer manager.

2. The method according to claim 1, wherein the observer
manager, the parser controller, and the plurality of parsers
represent different layers of the parsing framework, the
parser controller operating at a parser controller layer
between an observer manager layer and a parser implemen-
tations layer, separating the plurality of parsers from the
observer manager.

3. The method according to claim 1, wherein the parser
communicates a finding to the parser controller, wherein the
parser controller processes the finding into the outcome and
communicates the outcome to the observer manager, and
wherein the parser controller processes disparate findings by
the plurality of parsers into outcomes having a uniform
representation.

US 10,255,280 B2

15

4. The method according to claim 1, wherein the observ-
ers are instantiated by the application utilizing observer
design patterns residing on the parsing framework.

5. The method according to claim 1, wherein the parsing
framework is instantiated by the application and wherein
when parsing of the input stream is complete, control reverts
back to the application.

6. The method according to claim 1, wherein the appli-
cation runs on a server machine operating on an electronic
information exchange platform, the application implement-
ing a service provided by the electronic information
exchange platform.

7. The method according to claim 1, wherein the outcome
from the parser comprises reusable parsing components
including at least one of a record, a field of the record, a file,
or a segment of the file.

8. A system, comprising:

a processor;

a non-transitory computer memory; and

stored instructions translatable by the processor to per-

form:

receiving, by a parsing framework embodied on the
non-transitory computer memory, an input stream
from an application, the application having observ-
ers, each observer associated with a function of the
application, the parsing framework comprising an
observer manager, a parser controller, and a plurality
of parsers, the observation manager structurally insu-
lating the plurality of parsers from the application
and the observers, wherein the application attaches
the observers to the parsing framework and initiates
parsing of the input stream by the parsing framework
and wherein control of the parsing is inverted to the
parsing framework;

determining a parser of the plurality of parsers based at
least in part on a format of the input stream, the
determining performed by the parser controller;

instantiating the parser thus determined, the instantiat-
ing performed by the parser controller;

parsing the input stream, the parsing performed by the
parser determined by the parser controller;

determining which of the observers is to be notified of
an outcome from the parsing, the determining per-
formed by the observer manager;

generating at least one parsing notification, the gener-
ating performed by the observer manager; and

dispatching the at least one parsing notification directly
to any or all of the observers determined by the
observer manager of the parsing framework to be
notified of the outcome from the parsing, the dis-
patching performed by the observer manager.

9. The system of claim 8, wherein the observer manager,
the parser controller, and the plurality of parsers represent
different layers of the parsing framework, the parser con-
troller operating at a parser controller layer between an
observer manager layer and a parser implementations layer,
separating the plurality of parsers from the observer man-
ager.

10. The system of claim 8, wherein the parser communi-
cates a finding to the parser controller, wherein the parser
controller processes the finding into the outcome and com-
municates the outcome to the observer manager, and
wherein the parser controller processes disparate findings by
the plurality of parsers into outcomes having a uniform
representation.

20

25

30

35

40

45

50

55

60

65

16

11. The system of claim 8, wherein the observers are
instantiated by the application utilizing observer design
patterns residing on the parsing framework.
12. The system of claim 8, wherein the parsing framework
is instantiated by the application and wherein when parsing
of the input stream is complete, control reverts back to the
application.
13. The system of claim 8, wherein the application runs on
a server machine operating on an electronic information
exchange platform, the application implementing a service
provided by the electronic information exchange platform.
14. The system of claim 8, wherein the outcome from the
parser comprises reusable parsing components including at
least one of a record, a field of the record, a file, or a segment
of the file.
15. A computer program product comprising a non-
transitory computer readable medium storing instructions
translatable by a processor to implement a parsing frame-
work, the parsing framework operable to perform:
receiving an input stream from an application, the appli-
cation having observers, each observer associated with
a function of the application, the parsing framework
comprising an observer manager, a parser controller,
and a plurality of parsers, the observation manager
structurally insulating the plurality of parsers from the
application and the observers, wherein the application
attaches the observers to the parsing framework and
initiates parsing of the input stream by the parsing
framework and wherein control of the parsing is
inverted to the parsing framework;
determining a parser of the plurality of parsers based at
least in part on a format of the input stream, the
determining performed by the parser controller;

instantiating the parser thus determined, the instantiating
performed by the parser controller;
parsing the input stream, the parsing performed by the
parser determined by the parser controller;

determining which of the observers is to be notified of an
outcome from the parsing, the determining performed
by the observer manager;

generating at least one parsing notification, the generating

performed by the observer manager; and

dispatching the at least one parsing notification directly to

any or all of the observers determined by the observer
manager of the parsing framework to be notified of the
outcome from the parsing, the dispatching performed
by the observer manager.

16. The computer program product of claim 15, wherein
the parser communicates a finding to the parser controller,
wherein the parser controller processes the finding into the
outcome and communicates the outcome to the observer
manager, and wherein the parser controller processes dis-
parate findings by the plurality of parsers into outcomes
having a uniform representation.

17. The computer program product of claim 15, wherein
the observers are instantiated by the application utilizing
observer design patterns residing on the parsing framework.

18. The computer program product of claim 15, wherein
the parsing framework is instantiated by the application and
wherein when parsing of the input stream is complete,
control reverts back to the application.

19. The computer program product of claim 15, wherein
the application runs on a server machine operating on an
electronic information exchange platform, the application
implementing a service provided by the electronic informa-
tion exchange platform.

US 10,255,280 B2
17 18

20. The computer program product of claim 15, wherein
the outcome from the parser comprises reusable parsing
components including at least one of a record, a field of the
record, a file, or a segment of the file.

#* #* #* #* #*

