United States Patent

US010268709B1

(12) ao) Patent No.: US 10,268,709 B1
Suehs et al. 45) Date of Patent: Apr. 23,2019
(54) SYSTEM, METHOD AND COMPUTER 2006/0122845 Al* 6/2006 Denford GOGF 17/5009
PROGRAM PRODUCT FOR DATABASE 703/21
CHANGE MANAGEMENT 2007/0112885 Al* 52007 Farrccoevnne GOG6F 17/30377
2007/0112886 Al* 5/2007 Huang GOGF 17/30377
. . : . 2009/0271170 A1* 10/2009 De Barros GOG6F 11/261
(71) Applicant: Datical, Inc., Austin, TX (US) 203/21
(72) Inventors: Charles Steven Suehs, Dripping
Springs, TX (US); Peter J. Pickerill, OTHER PUBLICATIONS
Austin, TX (US); Robert E. Reeves,
Austin, TX (US); Daniel P. Nelson, Nanda_2011 (Simulation Demonstrates Performance, Jan./Feb. 2011,
West Lake Hills, TX (US) http://www.oracle.com/technetwork/articles/grid/o 11 exadata-187987.
htm).*
(73) Assignee: Datical, Inc., Austin, TX (US) Maule_2008 (Impact Analysis of Database Schema Changes, ICSE’08
))))) May 10-18, 2008, Germany).*
(™) Notice: Subject to any disclaimer, the term of this Marciniak_2001 (Process Models in Software Engineering, Feb.
patent is extended or adjusted under 35 2001).*
U.S.C. 154(b) by 1182 days. Bauer 2011 (Getting the most out of LiquiBase, http://blog.mgm-
tp.com/2011/04/data-modeling-part3/ Jul. 4, 2011).*
(21) Appl. No.: 14/201,511 LiquiBase_quickstart (Feb. 9, 2013 downloaded from https://web.
. archive.org/web/201302090123 10/http://www.liquibase.org/
(22) Filed: Mar. 7, 2014 quickstart).*
Related U.S. Application Data (Continued)
(60) grozxgii;nal application No. 61/775,244, filed on Mar. Primary Examiner — Brian S Cook
’ ’ (74) Attorney, Agent, or Firm — Sprinkle IP Law Group
(51) Imt. ClL
GOGF 17/30 (2006.01) 67 ABSTRACT
(52) US. CL Database servers may maintain a database according to a
CPC oo GO6F 17/30292 (2013.01) database schema. A database change management system
(58) Field of Classification Search can include a profile service configured to collect database
CPC it GO6F 17/30292 profile information and a simulation service configured to
USPC ittt 703/22 receive a set of changes to be simulated for the database and
See application file for complete search history. simulate an application of the set of changes to the database.
. A forecast service can be configured to receive a result of a
(56) References Cited simulation from the simulation service and database profile

U.S. PATENT DOCUMENTS
5,970,490 A * 10/1999 Morgenstern GO6F 17/30569

8,938,477 B1* 1/2015 Tang GO6F 17/30289
707/769

1012

RECORD ERRCR

RECEIVE A SET OF
CHANGES TO A DATABASE
LOAD MODEL OF THE
DATABASE
SELECT CHANGE

EVALUATE CHANGE
AGAINST MODEL/RULES

information and generate a report indicative of a prediction
of a failure or success of an implementation of the set of
changes.

21 Claims, 21 Drawing Sheets

ADDITIONAL
CHANGE?

US 10,268,709 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Minick 2011 (Automating Database Deployments: Worthwhile and
Supported by Tools, Blog Oct. 11, 2011 https://developer.ibm.com/
urbancode/2011/10/11/automating-database-deployments-worthwhile-
supp*

Schawartz_2008 (How to unit-test code that interacts with a data-
base, Baron Schwartz’s Blog, Aug. 19, 2008 downloaded from
https://'www.xaprb.com/blog/2008/08/19/how-to-unit-test-code-that-
interacts-with-a-database/).*

Nanda 2011 (Simulation Demonstrates Performance http://www.
oracle.com/technetwork/articles/grid/o 1 1exadata-187987 html).*

O Schawartz 2008 (How to unit-test code that interacts with a
database, Baron Schwartz’s Blog, Aug. 19, 2008 downloaded from
https://'www.xaprb.com/blog/2008/08/19/how-to-unit-test-code-that-
interacts-with-a-database/).*

Nanda 2011 (Simulation Demonstrates Performance 2011 down-
loaded from http://www.oracle.com/technetwork/articles/grid/
ollexadata-187987.html).*

oSchawartz_2008 (How to unit-test code that interacts with a
database, Baron Schwartz’s Blog, Aug. 19, 2008 downloaded from
https://'www.xaprb.corn/blog/2008/08/19/how-to-unit-test-code-that-
interacts-with-a-database/).*

* cited by examiner

US 10,268,709 B1

Sheet 1 of 21

Apr. 23,2019

U.S. Patent

601~

I "DIA
8¢l oyl 00l
S N / =
G611~ | ~G81 WILSAS | |
I71404d 907 IONVHD CIOVNVW JYYML0S
06}~ ININAOId3a JHaon P 08l ol | mmE_nz% -
™ e
JUYMLI0S WOLSAD
_
_
248N YIOVNVIN gOr NOILYINWIS chl
8L~ Isvo3u04 Javamon O+
Sﬁ»
HOLYHLSIHOHO
9LL—] gOrLINN LOHSAWNS I_gq,
0SL~] W3lSAS nway L TEd
HIADOYNYIN
ol el pp -] 3140¥d AOTdI0 N0
N 193roud 18043y AT
€0l
[
IV ~_ Gol
| 291 =
96}] 10 pG1 | NI 180N INTTONOHL N gy | INIOEIM N)
A
0l

U.S. Patent Apr. 23,2019 Sheet 2 of 21 US 10,268,709 B1

200
202 -
~] scHEwA
~ SIMULATION
INFORMATION SERVICE
208~]" changesTo | | [simuLaTION > smuLation |~206
SIMULATE v - MODEL
204
PROFLE | _
10—~ INFORMATION

Y
212 SIMULATION RESULT

FI1G. 2
502~ dbmodel
S06~J " schemaModel messageList | ~504
508" tables constraints ~-510

FIG. 5A

U.S. Patent Apr. 23,2019 Sheet 3 of 21 US 10,268,709 B1

304~ @ Changelog @ InterrogatorFactory
Changeinterrogator
T get (change)

Changeset N
306~ © 20

322 310 / \\\
\ N !

@Changeinterrogator © Change @ properties @ comment

© AddTable @RenameTable @ DropColumn @ AddColumn ©

/ / 4 / S
312 312 312 312 312
v
324 MODEL COMMANDS
v
RULES |+ SIMULATIONENGINE | | SIMULATION MODEL
335" 7y \ o \
326 328

330" PROFILE INFORMATON

FIG. 3

US 10,268,709 B1

Sheet 4 of 21

Apr. 23,2019

U.S. Patent

v "DIA
0cy 8Ly oLy iy [A34
N N / /
Julessuonanbiun @ JUIBASUOD|INNION @ JUIBJSUONd @ JUIBASUODY S @ uwnjon @
() swepnyob bumg () swepnyab bug
O—..v.\ MBIA a|qe @ /wo.v
() sweNyeb Bung
90v -] BWBYIS @ abessapy @ V0V
A ~-20v
[eponad
00¥ @
TAAON NOLLYINWIS

US 10,268,709 B1

Sheet 5 of 21

Apr. 23,2019

U.S. Patent

g6 'DIAd

9zs
N

74
N

44
N

{02)ieyoien, =adhy
,auoyd,=aweu
J(9)sautpxay,=adk)
,Ss8Jppe, =elley

«(GP)eyosen,=adf)
JIews, =aweu

J{0S)keyose,zedfy
,BWeu, =sWey

LBIqelnu Jou,=gnuTjou
ahi=anbiun

Jui paubisun,=adA}
WPl =8Weu

ensuooyd

uwnjonauoyd

uwn|essaIppe

UwnjoD)|iewa

uwnjopsuieu

uwnjogp!

N
028

N
81§

1sruwnjonege eydoad

~¥1S

¢

,8idoad zeweu

ojqe] eidoad
§

sg|qe}

¢

1sefiessaw

[OPOEWaYDS

~-2LS

™-809

N

fopougp

N
91§

US 10,268,709 B1

Sheet 6 of 21

Apr. 23,2019

U.S. Patent

LSIGB[INU"I0U, uNjoDp! {02)1eyouen,=adA)
,2ouenbagiunosoe,=aausnbas j/ anJ=enbiun :uwnjonpl ,ouoyd,=swieu «(0G)eyosen,=adfy
(01)oien,=8dA | |,y paufisun,zady uwnjogp) O J(g)souipxey,zody || SWEU,=OWEY
LWNNJUNOOO., =oWieu pl,=auley 098Uy __mme%m__uwsaﬂc —
UWINJODWINNJUNGII. UwWnjoPIUN0Ie +(Gp)eyolen,=odfy
< < lEWs, =8UeU ,90BlInu Jou,=|jnujou
(0e)1eyosen, z0dky Juensuonyd uwinjogssaippe uwnjopjiews ang=anbiun
BUENIUNoo9e., zallieu ves (4% Jut paubisun,zadA}
__b_._"wc(_mc
[0DBWENJUN030R
uwnjoQp!
mm\m / \ |
114 IAwal
JSITUWNIODB]qe | JUNCoe Jsruwnjogs|qe sjdoad
LSIUNoooE, =8lueu ,9idoad, zeweu
gzG1__ Glelunooe a|qe] 8jdoad
. N d
IS "DIA
so|qe} -80S
:
Jsrebesssw [OpOJyEWAYYS

N L

[opowqp

US 10,268,709 B1

Sheet 7 of 21

Apr. 23,2019

U.S. Patent

[epowiqp

WIefnuTIou, :uwnjoQp! WPL=/0040! W{0Z)Heyoren,zedfy
any=anbiun :uwnjoqpi | | .sunoooe,=sige]jes ,ouoyd,=oueu | | «{0GHeyoren,zodf)
Jui pauBisun,=adA} :uwnjonp JPIUN000E,=(00 | oo sumpogeuoyd J(9)ssulxe),=0dfy JSWEU,=3UIEU
«Pl=8Weu ._Q_QOQQ:HQQS / 4SS8IppE, =sllieu uwnjoneLweU
- WGy Meyosen,=ad)
LnopTERE PRnOoovaKoRe BigE(nU=]nU Iou Jews, 0wl | | ["5iqenu o, -nu jou
/ Jui pauBisun, =odk; “ %_”_ —onbiun
,8ouanbegiunasoe, =eousnbas j/ ovs pIunoooe, zsweu uwnjopssaippe uwnjoiews }=anD
{01)1eyoiea zadky Jui paubisun, =edfy
,WNNJUNGOOR, =oleU uwnjopppuncodysjdoad JPl, =8l
UWINODWINNIUNC20E _ uwiniogp!
W{0gheyosen,=ad} % N\E %
,OWEBNIUNOS0., =3 WEU
[07BWENJUN0O0E |—]
18IUWN|e)8|q. [}UNCOE Juensuooyd 1s4eigeLeidosd | | 1sruwnjonaiqe) aidoad
N
143
LSJunaoe, =eieu ,0|doad, =eleu
9)qejunodoe ojgejeidoad |~ _ 1S
Y 7
$o|q8)
¢ as did
1si1ebessaw |opONBWYDS

US 10,268,709 B1

Sheet 8 of 21

Apr. 23,2019

U.S. Patent

9 'DIA

Sjunogoe

g|doad

\ /

pIsjunodde | | ppunoooe-gidoad || Suonejal

Wwnuunoooe auoyd

oleu

NIV

Jopuro

JOpMaIA

NI

18I uwnjo

U.S. Patent Apr. 23,2019 Sheet 9 of 21 US 10,268,709 B1

801
B
e —— 3/00 DATABASE
PROFILE DATA | DROFILE ROW COUNTS OF DATA TABLES
STRUCTURE SERVICE [+ | | PARAMETERS:
/ -BUFFER SIZE
806 -MEMORY ALLOCATION
-FILE SYSTEM IMPLEMENTATION N
g 0/8 PERMISSION MODULES
SurSToT SUMMARY INFORMATION
SNAjSHOT B SERVICE [
810 8\1] SCHEMA STRUCTURE |_gy
FIG. 7
9/00 9/02
904~ REPORTING N REPORT OF PREDICTED
SERVICE (REPORTS) SUCCESS OR FAILURE
906~] SIMULATION SERVICE N
(MODELS, ETC.) -CONTEXT
FORECAST | -DETAILS
RULES SETS | | SERVICE "1 -CORRECTIVE ACTIONS
908" -RECOMMENDATIONS
PERMISSION MODELS |+
910"
OTHER OUTPUTS |
912"

FIG. 8

U.S. Patent Apr. 23,2019 Sheet 10 of 21 US 10,268,709 B1

1002~_ RECEIVE A SET OF
CHANGES TO A DATABASE

!

1004~ LOAD MODEL OF THE
DATABASE

v
1006~ SELECT CHANGE

!

1008~ EVALUATE CHANGE
AGAINST MODEL/RULES

YES

ERROR

1010 Yo

y MANIPULATE MODEL TO
RECORD ERROR 1014 SIMULATE CHANGE

!

RECORD CHANGE
1016 MEASUREMENTS

1012
N

4

)

ADDITIONAL
CHANGE?

FIG. 9

U.S. Patent Apr. 23,2019 Sheet 11 of 21 US 10,268,709 B1

I

1102~ SETUP % "PRODUCES CONFIG"[ﬁ
1104 ~ *
REVIEW DATABASE STATE |«
!
1106~ GENERATE "PRODUCES Changelog
1108 and changesets”
\ !
PROFILE Db REVIEW Changel.og ~-1110
l A
A v A l vy \]
FORECAST EDIT TRIAL RUN APPLY UPDATE
/ / N N
1112 11/20 1114 1116 1118
\
REVIEW FORECAST

FIG. 10

US 10,268,709 B1

Sheet 12 of 21

Apr. 23,2019

U.S. Patent

SPONEIqe L O SBY)| Pajesio 1S80aI04
SOTIONVHOISYAVIYA, *Aop, Woij buipoay :aspginbi:nd 647 ¢1/82/C ONI
LOO0TIONYHOISYEYLYA, %3 woyy buipoay :esoqnbing 6+ £1/82/¢ 0N
LOOTIONVHOISYAVLYQ, ‘Aep, woyy buippay :asoqnbitng 6+:Z £1/82/¢ 0N
4a [eoged
f_M = >.m A om mﬂwvﬂ ﬁx m_omcoo'\
_ 92In0S % ubiseg _ ueld
pod| aseqejeq 1s9)| aseqejeq Asp| asegeeq
159} | aweulesn 1s8) [slewIAS 1s9) | aweulasn
90€¢ Jod 90€€ Jod 90€€ Jod soysdeus 7 <
1S0Y[e20] | SUWEU)SOH 1S0Y|e20] | aWeu}SOH 1S0U|B20| | BWweujsoH _
JenugaqplbsAur wod Januq | seauqogplbsAwrwod JaAuQ || seaugogpl bsAw oo JaauQ ¢Losvl mmmomrouwmoe&@,.
uoRoONpoIgX . swep vOXL awep AopX auieN 0v6YYL8220€ | 0zA0ldop L) «
uonasuLo)) JIp3 uodsuuc) 1ip3 uonosuuo) 1ip3 spoday /4
MojsiH Joeqiioy MojsiH Hoeqjioy MojsiH Hoeqjioy VOXL 9seqeiea TS <>
Z - 919 dnyooIppe - YOX. A Aopx] 85eqE1e] TOSAN <
== < WA!JAU @/ uejd Em;oama ¢Y A
-
(oeqrorone)fodeq || oeqioropnejfodeq || DreqioronejAodeq U
Fojdeqg }seoaio4 Foideg 1se29.10- Foidag 1e08.104 HOT00 ANV XL =
uolNpPoIdX L <OX.—. ABPX) HLOd NI G3ar0s3a mo.._ wmcmr_o w 1A
» » ue|d awhojdeq NOISHaA VWaHOS Bunupx L A4
= | | 1uxozosyl8z20¢ 102 Jousdeus @, | |Bunupx . - uerd wewkoeq @ | | O _ A S Tm_m wawfodeq [J]
yozL~* | | 201~ | [
, T 553000 SSINSNA SLOTHaY LNOAVTNVId INWADT30 @m _
€a 1edjeqg 000
ooz~ 11 °DIg

US 10,268,709 B1

Sheet 13 of 21

Apr. 23,2019

U.S. Patent

V<l ‘Old

<aN || || doeg >

jeoueg | ([uswig |

—

JosM gQ [edneq | Joyny

|-suwinjondoi(al

3o abuey, e ajealn

XEO 195 abueyn maN e ajeal)

US 10,268,709 B1

Sheet 14 of 21

Apr. 23,2019

U.S. Patent

d<Z1 'DIA

oue || || ysig || | <weN | || oeg >

Julensuo) |InN-joN doig O

MBIA SlUBUSY O

a|0e] sweusy O
uwnjon sweusy O

adA | eleq Appop O

maip doig O suwnjo) abispy O

wirensuon enbiun doig O Xapuj ajeain O

8jqe] doig O Juiessuog anbjun ppy O

aousnbag doig O foy Aewnd ppy Q

Aay Aewnd doig O a|qe] dnjoo ppy O
xepu] doig O Julensuod JINN-JON PPY O TOS wosny O
sjuiensuo) Aey ubieiog doig O | | iensuon Ay ubiaiod ppy O MaIA 8jeaI]) O
anjeA ynejeq doig O anjeA ynejea ppy O aInpaooid djeal) O
uwnjop doiq ® uwnjod ppy O gousnbag ajeasy O
sjulesjsuo?) Aey ubaio4 |y doig O Juawaoul-oiny ppy O a|qeL sealn O
JoelqQ Bupsix3 ue sjejeq —— — 100[qQ buisix3 ue Ajipoy — - 108l MeN e ajeas) -
abueyn jo9je8
X0 198 8buByn maN e ajeaI)

US 10,268,709 B1

Sheet 15 of 21

Apr. 23,2019

U.S. Patent

aci ‘DIA

D¢l "DIA

[eouen [I yswig || | <N

yoeg >

[souen

yswig || | <xeN

yoeg >

“IXaN, Y10 18s abueyo sy 0) abueyo Jayjoue ppe
0} ayjl| p,noA §| * ysiuld, Y0110 ‘pasu nok sebueyd sy} e ale 8say} J|

uwnjondoip :swepN sjgef
ULLNJOY]00q BWIBN ULLNjo?)

uwnjog doig

— SjiEjed

sebueyn
9zjjeuty

uwnjonIeyD.eA
uwinjoul

uwinjonalep

uwnjojooq |

aousnbagdoup
RoyAiewuddosp
Juensuo)|nNioNdoip
xapu|dosp
anjeaynejaqdop
uwnjondoip]
MOIASIBDID
Xopu|ejesso
souanbagls)|yiessn
JUsWWo
Jurensuoganbiunppy
Aoyfiewudppe
8|qe j dnyooippe
Zwensuonhayubiaio4ppe
ressuonfayubiaiojppe
on[eAlnejeqgppe
uwnjonppe
Juswaloujonyppe

suwnjo)

sajqe L s|qejleAy
uwnjoy douq

|iejaq abuey9 apinoid

XE0

108 abueyn meN e ajesin

XE0

Jog abueyn moN e ajesl)

US 10,268,709 B1

Sheet 16 of 21

Apr. 23,2019

U.S. Patent

< 7

¢l DId

- >
<bojebueynaseqejep/> LA
<jagabueyos [1-suwnjondoig BT |
</,uunjondolp,=eWeNa|ge} ,UWN|oDj00g,=aWENUWN|0 Uwnjo)doips | X|JUBWe.OU[ONY ET]

<,}-suwnjondoig,=p! 498N gQ [eoneq,=ioyine Jagabueyos

<jagabueyos>

S.=Aguswalnu pl,=oWeNUWN|02 Jul,=odA | BlRQULINIOY JUSLSIOUI0INYPPE>
<, | XIJIUBWRIoUIoNY, =Pl ,819d,=Joyinejegabueyos

,AN1,=paiapio £ SNAUIW ,00Z.=9NAXeW F,=Aglusiuaiou) sausnbage)esios
<, L-X1Joousnbagajealn,=pi ,310d,=loyine jagabueyds
<agabueysss

[INNIINELSP ,pl=0WBNULNOY (Ghul,=adA] BJRCULLNOY JUIBRSUONINNIONPPE>
<, L XIUIBISUODINNIONPDPY.=P! S18d=Joyine Jagebueyos
<jagabueysys

NN~ P uUWNOOppE, =eWENJUIBLSUOD Pl =SSWUBNULINOI Julglisuonenbiunppes
<. -XIuensuonsnbiunppy,.=pi 919d,=Joyine jagsbueyss
<jagabueysy>

<Xapuje)esso/>

</,pl,=8WeU uwnjoo>

ujoInyppe,=aWBeNS|qe] Xapul I jusWaoujoINyppe, =SUWBNXSPUl Xapu[ejealos
<,}-XI4xepujaiesin,=pi 8lod,=loyine Jegebueyo>
<Jjesabueyos

LUWNODUI™ paWRLSL,=aUIBNULNIOD MU ,Jul,=edA | BJe(JULUN0D UWNODSWRU>
<, L XIJuwnjonsweusy,=pl ,918d,=Ioyine jogabueyos
<jagabueya/s

LULUN|0N)|00q, =aWeNUWN|od NYI1004.=edA | Blequuwinjod enfeAlnejeqdolps
<.l -X14enfeaynejeqdoiq,=p! ,810d,=Joyine jegebueyos
<1egebueyo/>
BUIBLIOYMBIA, =OUBNMBIAPIO ,MBIAPBWIEBUSYA|INISSS0NS, =BLUENMBIAMBU MOI\BWEBUSI>
WO} UWNOD00(‘UWNOIUI 10910S<, MOIABWIBUSHMOIA, '=OUWBNMBIA MOIASIBID>>

|-Xi{Xapuisiesid M
o J-XiqUWnjoHaweusSy M
|-xi4enfeAlnejeqdoiq B0
|-maipsweuss BT

¢-o|de | sweual M

|-8jqesweual EJ |

J-uwinjopsweual E7]
Z-odA | eeqhyipow ET]
|-adA | eegAppow E]

y-uwnjonabisw E[]
g-uwnjopebisw ET]
Z-uwnjonebrew
|-uwnjoebiew B[
- g-ejepauasul
Z-9)elpauesul B[]
|-819jpguesul]
Z-maipdoip E[]
@ |-maipdolp B

| X oweq ToSAW 80 eoReq - veid juswAoideq &

Y= Tm_m juswhoydeq Eg

U.S. Patent

US 10,268,709 B1

Apr. 23,2019 Sheet 17 of 21
DbDef Version Server Database
Dev
Austin 1 Demo-43 devdb1.austin.datical.com dev1
Austin 2 Demo 43 devdb1.austin.datical.com dev2
Bangalore 1 | Demo-32 devdb.bangalore..datical.com | dev1
Bangalore 2 | Demo-32 ::ii| devdb.bangalore..datical.com | dev2
Prague 1 -Demo-32 ;| devdb.prague.datical.com dev01
Prague 2 Demo-32 devdb.prague.datical.com dev02
QA
QA1 Demo-39 devdb1.austin.datical.com test1
QA2 Demo-39 devdb1.austin.datical.com test2
Production
ec-001 Demo-38 10.0.1.1 awesomedb
ec-002 Demo-38 10.0.1.2 awesomedb
ec-003 Demo-38 10.0.1.3 awesomedb
ec-004 Demo-38 10.0.1.4 awesomedb
ec-005 Demo-38 10.0.1.5 awesomedb
ec-006 Demo-38 10.0.1.6 awesomedb
ec-007 :Demo-32 3 10.0.1.7 awesomedb
ec-008 Demo-38 10.0.1.8 awesomedb
ec-009 Demo-38 10.0.1.9 awesomedb
ec-010 Demo-38 10.0.1.10 awesomedb
ec-011 Demo-38 10.0.1.11 awesomedb
ec-012 Demo-38 10.0.1.12 awesomedb
ec-013 Demo-38 10.0.1.13 awesomedb
ec-014 Demo-38 10.0.1.14 awesomedb
ec-015 Demo-38 10.0.1.15 awesomedb

FIG. 14A

US 10,268,709 B1

Sheet 18 of 21

Apr. 23,2019

U.S. Patent

dv1 DIA

£00-93 ¢ JHOTVONVE | | ¢ 3NOVHd

| JHOTVONVE | |1 3INOVHd

900-99

ﬁ)(ﬁooemi

Qs>
@ @ Qs

JHOTVONVE JNOVYd NILSNV

NOILONAO¥d YO A3d

US 10,268,709 B1

Sheet 19 of 21

Apr. 23,2019

U.S. Patent

Y1 "DId

ge-owa(VO

ge-ows(
l mhﬂmwmcmm

Ze-owe(
Z siopebueg

O

O
O ouwsg

ze-oieg * anbeid
Z onbely

gy-oweq

U.S. Patent Apr. 23,2019

Sheet 20 of 21 US 10,268,709 B1

CHANGELOG PROJECT

1614 ~_ l

}/1616

DEVELOPMENT

1602

APPLICATION ON WORKSTATIONS

QA [T/OPERATIONS

- 1606

DEV

DATABASE
1608

DATABASE
1610

PRODUCTION

DATABASE
1612

FIG. 15

U.S. Patent

Apr. 23,2019

Sheet 21 of 21

DEVELOPMENT

QA IT/OPERATIONS

~1706

1704

\\\/

- VERSION CONTROL
REPOSITORY
1708 1710
DATABASE SERVERS
~ B~ N
DEV QA PRODUCTION
DATABASE DATABASE DATABASE
FIG. 16 1714 1716 1718
DEVELOPMENT QA ITIOPERATIONS
1800~ | ~1802 | ~1804 | ~1806
- VERSION CONTROL
REPOSITORY
1808 | ™-1810
DATABASE SERVERS
- < B <
DEV QA PRODUCTION
DATABASE DATABASE DATABASE
1814 1816 1818

FIG. 17

US 10,268,709 B1

US 10,268,709 B1

1

SYSTEM, METHOD AND COMPUTER
PROGRAM PRODUCT FOR DATABASE
CHANGE MANAGEMENT

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims a benefit of priority from U.S.
Provisional Application No. 61/775,244, filed Mar. 8, 2013,
entitled “SOFTWARE INTEGRATION SYSTEM AND
METHOD,” by Suehs et al., which is hereby incorporated
herein by reference in its entirety for all purposes as if fully
set forth herein.

TECHNICAL FIELD

This disclosure relates generally to management of com-
puter systems. More particularly, some embodiments relate
to management database systems. Even more particularly,
some embodiments disclosed herein relate to a system,
method, and computer program product for database change
management.

BACKGROUND OF THE RELATED ART

The development of databases and database schemas is
increasingly complex. Typically, database development and
management involves running database instances in mul-
tiple environments. It is not uncommon, for example, to use
three environments with potentially differing schema: a
development environment; a quality assurance (QA) envi-
ronment; and a production environment. The development
environment is used in the authoring of the database struc-
ture. The QA environment allows for testing of the appli-
cations and enhancements that use the database. The pro-
duction environment is the final database for general use.
For example, the production environment may be a cloud
computing system, an enterprise content management sys-
tem or other system that makes use of the database.

Changes in a schema in a development environment may
be migrated to the QA and production environments. At
various times, the different environments may have different
schema. Moreover, multiple instances of a database in the
same environment may be using different versions of a
schema depending on when the database was last updated.
This can result in errors when changes are migrated from
one database to another.

Conventionally, schema management is handled through
the generation, review, and execution of SQL scripts
executed against the target database instance. Building a
new database or modifying an existing database may be
dependent on hundreds of small scripts to build out new
environments or evaluate existing ones. Once executed, the
scripts generally leave no history of their passing other than
the presence of the pieces they create, delete or modify.
Thus, it can be difficult to reproduce how schema changes
were applied. Moreover, there is no traceable history of who
did what and why from environment to environment. Appli-
cation issues caused by database errors become hard to
troubleshoot because there is no easily digestible standard to
use as measuring stick in evaluating a malfunctioning envi-
ronment.

In view of unique challenges in authoring, discovering,
and migrating database structure changes, there is room for
innovations and improvements.

SUMMARY OF THE DISCLOSURE

Embodiments disclosed herein provide a system, method,
and computer program product for database change man-

10

15

20

25

35

40

45

55

60

65

2

agement. A database change management system, in accor-
dance with some embodiments, can include a processor and
a non-transitory computer readable medium storing com-
puter executable instructions executable to provide a set of
services including: a profile service configured to collect
database profile information; a simulation service config-
ured to receive a set of changes to be simulated for the
database and simulate an application of the set of changes to
the database; and a forecast service configured to receive a
result of a simulation from the simulation service and
database profile information and generate a report indicative
of a prediction of a failure or success of an implementation
of the set of changes.

According to some embodiments, simulating application
of the set of changes to the database includes accessing a
model of the database schema and applying the set of
changes to the model of the database schema. The model of
the database schema can include an object model comprising
table objects, column objects, and constraint objects related
according to a database schema of the database. The simu-
lation service can be provided with or be configured to build
the model of the database schema. In some embodiments,
the simulation service is configured to receive a snapshot set
of changes and build the database model by loading an
empty database model in memory and changing the database
model according to the snapshot set of changes.

In some embodiments, applying the set of changes to the
model of the database schema includes (a) selecting a
change from the set of changes as a selected change; (b)
determining if application of the selected change to the
model of the database schema would result in an error; if so,
recording the error; otherwise, manipulating the model of
the database schema according to the selected change to
update the model of the database schema. Steps a-b can be
repeated for each change in the set of changes until all the
changes in the set of changes have been used as the selected
change.

A database change management system may also include
a schema migration service configured to implement a
migration of the database schema to a second database. In
some embodiments, the system includes a graphical user
interface for viewing multiple databases in a radar view,
wherein the multiple databases are plotted in sectors and at
radii based on a state, revision, or step classification. Such
a display may aid in identifying the databases to which
schema changes should be migrated.

Another embodiment can include a method for database
change management comprising: receiving a set of proposed
changes to a database schema; accessing a model of the
database schema in memory, the model of the database
schema comprising representations of tables, columns and
constraints; simulating an application the set of proposed
changes to the database and reporting a result of simulating
the application of the set of proposed changes.

Another embodiment can comprise a computer program
product comprising a non-transitory computer readable
medium, storing a set of computer executable instructions
executable to perform a method comprising: receiving a set
of proposed changes to the database schema; accessing a
model of the database schema in memory, the model of the
database schema comprising representations of tables, col-
umns and constraints; simulating an application the set of
proposed changes to the database and reporting a result of
simulating the application of the set of proposed changes.
The computer executable instructions may further comprise
instructions executable to establish a connection with a
database and collect a snapshot of the database.

US 10,268,709 B1

3

Simulating the application of the set of proposed changes
to the database can include selecting a change from the set
of proposed changes as a selected change, evaluating appli-
cation of the selected change against the model of the
database schema to determine if the selected change would
result in an error and if so, logging the error; otherwise,
manipulating the model of the database schema according to
the selected change to update the model of the database
schema. In some cases, the model of the database schema
may be manipulated according to a change even if the
change would result in an error.

The snapshot may include a change log. According to one
embodiment, the model of the database schema may be built
from the change log. An empty model may be loaded in
memory and the snapshot changes applied to the model to
populate the model of the database schema. This can provide
a baseline schema model against which proposed changes
can be evaluated. In some cases, the proposed changes can
be added to the same change log as the snapshot changes.

In some embodiments, determining if the application of
the selected change would result in an error comprises
evaluating the selected change against a set of constraints
modeled in the model of the database schema.

Embodiments described herein provide an advantage by
determining whether a schema change will be successful
before the schema change is applied. Accordingly, errors
that may result when migrating a schema change from a first
database (for example, a development database) can be
identified prior to the schema change being made to another
database (for example, a production database).

Embodiments provide another advantage by providing a
model that maps out objects in a database schema and
relationships between objects. The model can include infor-
mation to document the purpose and history of each object.

According to some embodiments, schema change can be
managed by incrementally updating a limited number (in
some cases a single) historical document.

These, and other, aspects of the disclosure will be better
appreciated and understood when considered in conjunction
with the following description and the accompanying draw-
ings. It should be understood, however, that the following
description, while indicating various embodiments of the
disclosure and numerous specific details thereof, is given by
way of illustration and not of limitation. Many substitutions,
modifications, additions and/or rearrangements may be
made within the scope of the disclosure without departing
from the spirit thereof, and the disclosure includes all such
substitutions, modifications, additions and/or rearrange-
ments.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings accompanying and forming part of this
specification are included to depict certain aspects of the
disclosure. It should be noted that the features illustrated in
the drawings are not necessarily drawn to scale. A more
complete understanding of the disclosure and the advantages
thereof may be acquired by referring to the following
description, taken in conjunction with the accompanying
drawings in which like reference numbers indicate like
features and wherein:

FIG. 1 is a diagrammatic representation of one embodi-
ment of a management system.

FIG. 2 is a diagrammatic representation of one embodi-
ment of a simulation service.

FIG. 3 is a diagrammatic representation of one embodi-
ment of processing a change log.

20

25

30

40

45

50

55

65

4

FIG. 4 is a diagrammatic representation of one embodi-
ment of simulation model.

FIGS. 5A, 5B, 5C and 5D illustrate one example of
updating a simulation model.

FIG. 6 depicts a diagrammatic representation of an
abstract syntax tree according to one embodiment.

FIG. 7 depicts a diagrammatic representation of an
example a profile service and a snapshot service.

FIG. 8 depicts a diagrammatic representation of one
embodiment of a forecast service according to an embodi-
ment.

FIG. 9 is flow chart illustrating one embodiment of a
method for simulating a database schema change.

FIG. 10 is a diagrammatic representation of one embodi-
ment of a workflow for forecasting the results of changes.

FIG. 11 is a diagram illustrating a graphical user interface
according to embodiments.

FIG. 12A, 12B, 12C and FIG. 12D depict graphical user
interface wizard screens according to an embodiment.

FIG. 13 is a diagram schematically illustrating a results
screen according to embodiments.

FIG. 14A, 14B and FIG. 14C depict large scale status
screens according to embodiments.

FIG. 15 is a diagrammatic representation of one embodi-
ment of a topology for database change management.

FIG. 16 is a diagrammatic representation of another
embodiment of a topology for database change manage-
ment.

FIG. 17 is a diagrammatic representation of yet another
embodiment of a topology for database change manage-
ment.

DETAILED DESCRIPTION

The disclosure and various features and advantageous
details thereof are explained more fully with reference to the
exemplary, and therefore non-limiting, embodiments illus-
trated in the accompanying drawings and detailed in the
following description. It should be understood, however,
that the detailed description and the specific examples, while
indicating the preferred embodiments, are given by way of
illustration only and not by way of limitation. Descriptions
of known programming techniques, computer software,
hardware, operating platforms and protocols may be omitted
s0 as not to unnecessarily obscure the disclosure in detail.
Various substitutions, modifications, additions and/or rear-
rangements within the spirit and/or scope of the underlying
inventive concept will become apparent to those skilled in
the art from this disclosure.

Embodiments described herein can provide a database
change management system that facilitates authoring, dis-
covering, or migrating database structure (schema) changes
from one database instance to another. However, before
discussing database change management, an architecture for
one embodiment of a management system is provided. The
management system may be configured as a database change
management system or for managing other systems.

FIG. 1 is a diagrammatic representation of one embodi-
ment of a management system 100 having a framework 102
that provides a variety of job services 103 and system
services 104. User interface modules 105 can provide access
to framework 102 by human and programmatic users.
Framework 102 may include or be in communication with a
framework database 109 for storing outputs of the various
services, such as results or simulations, reports, snapshots,
and the like. The various service modules, databases and

US 10,268,709 B1

5

software components illustrated in FIG. 1 may be provided
by a single computer or may be distributed across multiple
computers.

Job services 103 perform various system management
tasks provided by framework 102. According to one
embodiment, job services 103 include a job request manager
121 that can route requests to one or more of a deploy
service 107, snapshot service 108, compare service 110,
simulation service 112, profile service 114, forecast service
118, and multiple job orchestration service 116. System
services 104 can be used by administrators of framework
102 to control usage of the framework in an organization.
Example system services include managed system service
130, report service 132, admin service 134 and others.

Various job services 103 can interact with managed
systems 128 to collect information from and update the
configuration of the managed systems. However, there may
be existing (or developed) software components and engines
that already perform certain tasks. For example, there are a
number of off-the shelf and open source software compo-
nents that can collect information from a variety of managed
systems 128 and receive inputs to affect configuration
changes to a managed system. To this end, various software
components 140 can be integrated with components of
framework 102. For example, various services may integrate
third-party systems management engines to perform various
tasks, such as taking snapshots, making profiles, and com-
municating changes. In some cases, the integrated software
components 140 comprise management code installed on or
that interacts with a managed system 128 to collect data of
interest or update configuration.

According to one embodiment, integrated software com-
ponents 140 may include open-source software modules
used to manage schema changes. In some embodiments, the
Liquibase engine may be used (Liquibase is Open Source
software available from www.liquibase.org) to snapshot a
database schema. Other embodiments may integrate with
other database change engines, refactoring systems and
database versioning tools that can provide a description of a
database schema or other functionality. Furthermore, frame-
work 102 may integrate software components 140 providing
any other desired management functionality.

A software component 140 may provide a native Appli-
cation Programming Interface (API) that handles the
exchange of information between the integrated software
and the framework 102. In other embodiments, one or more
custom adapters 142 can be used to allow a software
component without a native APl for framework 102 to
communicate with other components of framework 102.
Regardless of the method used to integrate with the frame-
work 102, the adapter, native API or other integration can
include a data model specification. Framework 102 can use
a data model to communicate commands and data to/from a
managed system/integrated software. For example, a data
model can provide a consistent and predictable model to
communicate system status (e.g., for the snapshot service
108 or profile service 114 or other services) and describe
changes the user wishes to make to the managed system
(e.g., for deploy service 107, simulation service 112 or other
services). New adapters and APIs can be developed for
additional integrated software, mapping the data model used
by framework 102 to the specific commands and interfaces
used by the integrated software. Thus, framework 102 can be
extensible to handle a variety management functions by
integrating new software components 140 with job services
103.

10

15

20

25

30

35

40

45

50

55

60

65

6

Framework 102 may employ user interface modules 105
such as, for example, a web interface 150, a thick client
interface 152, a mobile client interface 154, a command line
interface (CLI) 156. Web interface 150 requires only a web
browser that preferably provides a runtime environment to
support web client applications. In this case, framework 102
can be hosted on a system accessible to a user via the internet
or a local intranet. In some embodiments, users of this
interface will be able to perform all actions provided by the
framework. Web interface 150 may provide an application
operating in the browser runtime environment.

A thick client is a client application that a user installs on
the user’s local system in order to gain access to framework
102. Once installed, the user can perform tasks provided by
the framework 102. In some embodiments, a thick client
may provide more in depth tools for evaluating data pro-
vided by and authoring content used by framework 102 in
managing IT systems, while the web interface 150 provides
a more limited set of tools. In other embodiments, the web
interface 150 and thick client can provide the same tools.

Mobile interface 154 can provide a method for accessing
framework 102 on smart phones and computing tablets and
the like. According to one embodiment, mobile interface 154
can offer all of the functionality of web interface 150, but in
other embodiments can be designed to emphasize the report-
ing, job approval, alerts, and job history views.

CLI 156 can provide methods to access framework 102
without relying on a graphical tool such as a web browser or
thick client application. To use CLI 156, a user types
commands and arguments to those commands into a text
terminal (for example, but not limited to cmd.exe on Win-
dows or bash/sh/ksh etc. on Linux) or the like. The text
terminal runs on a system that has network access to
framework 102 (such as a network connected terminal). CLI
156 can enable shell or batch scripting of framework 102
tasks and provide an integration point for other information
technology assets (test automation systems, build systems,
application deployment automation programs).

A thick client application, web client application mobile
application, or other interface can be provided to extend the
capabilities of underlying integrated software components
140. Since many applications for managing IT systems have
esoteric ways of providing and storing data, a thick client,
web client application, mobile application can provide a
series of graphical interfaces (‘Wizards’) the can ease the
task of authoring data or requests for the management
applications.

An access control API 162 can act as a gatekeeper to
accessing data and performing tasks with framework 102.
According to one embodiment, requests from all interface
modules 105 pass through access control API 162. When a
request is made by a user, API 162 consults the database 109
or a local cache of permission information for users that
have recently made a request. If it is determined the user has
permission to make the request, the request is forwarded to
the appropriate service for completion. If the user does not
have permission to submit the request, the user is notified
that access is denied. These permissions can include, but are
not limited to the following: individual and group access
(read-only; read and write; none) to specific managed sys-
tems; individual and group access (read-only; read and
write; none) to job services 103 (snapshot, deploy, forecast,
etc.); individual and group access (read-only; read and write;
none) to system services 104 (managed system service,
report service, admin service); individual and group access
(read-only; read and write; none) to specific software inte-
grations. As an example, a user or group of users can be

US 10,268,709 B1

7

permitted to use an enabled software component 140 to
manage database schema changes but forbidden to use an
integrated software component 140 that manages network
switches.

Turning now job services 103, snapshot service 108
connects to managed system 128 and collects information
about the current state of managed system 128. Snapshot
service 108 may utilize an integrated software component
140 to determine the current state of managed system 128 as
it pertains to the integrated software and store the snapshot
in the format utilized by other components of framework
102. As an example, snapshot service 108 may integrate a
software component 140 to collect a snapshot of the schema
as it is currently; a firewall configuration tool to collect a
snapshot of the current rules being applied on the firewall to
control access, a storage array management tool to collect a
snapshot of rules for routing data to storage, etc.

Snapshot service 108, thus, provides a current configu-
ration of a managed system. The information may be
returned in a persitable format to the job request manager
121. Job request manager 121 can store the information in
database 109, return the information to a requesting user or
provide the information to another service.

Deploy service 107 affects changes on a managed system.
The user provides the identifier(s) for the managed system(s)
targeted and the data necessary to perform the desired
change in a text, xml or similar document. Deploy service
107 then attempts to execute the change and returns whether
the job succeeded or failed and any descriptive information
about the job (logs, reports, return codes, etc.) to job request
manager 121. Job request manager 121 can store the infor-
mation in database 109. In the event of a failure, a rollback
function can optionally be called to revert all changes made
by the job up to the point of failure. In some cases, deploy
service 107 may integrate with a software component 140
and provide requests to the software component 140 so that
software component 140 propagates the change.

Simulation service 112 predicts the impact of proposed
changes against targeted managed system(s) and returns a
model of what the managed system(s) may look like after
execution. Simulation service 112 also predicts any errors or
failures a deploy job might encounter based on the proposed
changes. According to one embodiment, simulation service
112 can map proposed changes to managed system 128 to
commands run against a model of the managed system to
determine the impact of the changes. Job information, such
as logs, return codes, model of predicted system state, and
errors can be returned to job request manager 121 for entry
in database 109.

Profile service 114 can retrieve information about the
current state of managed system 128 and augment data
returned by snapshot service 108 with other data that might
impact the application of changes. For example, when
performing updates to a database schema it may be helpful
to know how many records a table contains to gauge how
long a change might take and how this might affect perfor-
mance of a Deploy job.

Forecast service 118 can combine output of the simulation
service 112 and profile service 114 detailed above in order
to predict failures and performance of a proposed deploy
job. Forecast service 118 can return reports to job request
manager 121 for entry in the database 109. The forecast
service can report contains information about the success of
proposed changes and performance of a deploy job of
proposed changes.

Compare service 110 can compare two or more managed
systems in the context of the specified integrated software

10

15

20

25

30

35

40

45

50

55

60

65

8

component 140 or service. Compare service 110 returns a
report of the differences to job request manager 121 for entry
in the framework database 109.

When performing complex tasks it may be necessary to
organize a series of jobs into a single job execution. Multiple
job orchestration service 116 allows a user to create job
groups into a single execution for the purposes of monitor-
ing and reporting. The user can also specify certain behav-
iors in the event of individual job failures. For example, to
deploy an application a user may configure a job to deploy
the application binaries, a job to update the database schema,
and a job to configure monitoring routines for the deployed
application. The user can then group these jobs into a job
group and specifies that if one job fails all changes already
affected should be reverted. With a single request, all three
jobs run. If, for example, the job that creates the monitoring
routine fails, the previous two jobs are reverted and, accord-
ing to one embodiment, the entire job group fails.

Job services 103 can support a variety of job types.
However, if integrated software components 140 are used,
not all job types will make sense for all integrated software.
In the event that a specific job type has no meaning for an
integrated software component 140, the API or adapter can
be configured to handle requests for that job type gracefully.
Furthermore, as discussed above, deploy service 107 and
profile service 114 can be configured to return a meaningful
report to job request manger 121. The format and content
can be determined by the API or adapter 142 the integrated
software employs to interact with framework 102.

Managed system service 130 allows an administrator to
add, update, and delete managed system(s) in the framework
database 109. Information stored about a managed system
will differ based on the management system 128, service or
integrated software component 140. While the information
stored may vary, examples include, but are not limited to:
hostname; system login (local user/group information), sys-
tem specifications (e.g., memory, processing power, hard
disk space, ports, etc.); available resources including
resource types (e.g., Oracle Database, Apache Server, Nag-
ios Monitoring Instance), resource instances (e.g., a system
is host to 2 distinct Oracle Database instances named dbl &
db2; instance access information (e.g., access credentials,
access ports for each, miscellaneous connection informa-
tion), database version information, such as the schema
version deployed in the database.

Report service 132 is used to return reports that contain
historical data about framework jobs based on parameters
defined by the end user. Example parameters include: man-
aged system name(s), success or failure, date, job type
(deploy, snapshot, comparison, etc.), type of service used
(e.g., database schema migration, monitoring configuration,
application deployment), any of the integrated software
components 140 used to date and present in framework 102).

Admin service 134 allows an administrator of framework
102 with the appropriate system privileges to manage sys-
tem users and groups, system access details, and framework
configuration information. This service can be used to
configure various items, including, but not limited to groups
(e.g., group names, members, permissions, descriptions,
etc.), users (e.g., user credentials, group memberships, con-
tact information, permissions, etc.), framework configura-
tion information (enabled/disabled interfaces, interface con-
nection settings (e.g., hostnames, ports, access control lists
for each interface, location of framework services, connec-
tion information for framework components), software inte-
gration information (e.g., available management applica-
tions or other software, connection information, location of

US 10,268,709 B1

9

integration dependencies (e.g., database drivers, libraries/
function archives, runtime environments), etc.) and other
information.

Project services 136 may provide adding, altering and
saving project contents, such as change logs, database
definitions, deployment plans, rules, scripts, and lookup
data.

Database 109 can be the central storage point for all data
pertaining to framework 102. Examples of data are
described in the service descriptions above. At a high level
this data can include but is not limited to the following: user
information, permission information, job execution infor-
mation, job execution artifacts, reports, logs, data used in
execution, managed system information, framework con-
figuration information, software integration information and
other information.

The following provides some example workflows using
framework 102. First, the example of adding a new user to
manage the deployment of a specific web application,
SampleApp, is described. In this example, the user needs to
be able to access framework database 109, the managed
systems 128, and the integrated software components 140
that apply to managing the web application’s deployment
processes.

A framework administrator logs in to the framework 102
and navigates to the section for creating users and groups.
The system administrator creates a group called ‘Sample-
App’, which is given permission to access all of the man-
aged systems slated for use as part of the ‘SampleApp’
application project. The ‘SampleApp’ group is given access
to snapshot service 108 for the integrated software compo-
nents 140 that manage the web servers, database servers, and
middleware servers. This allows all members of the
‘SampleApp’ group to perform snapshot on managed sys-
tems associated with the ‘SampleApp’ project to determine
the current state of the managed systems 128 of interest, but
prevents them from altering the managed systems 128 by not
granting permissions to the other job services. The system
administrator then creates a user account for the new user.
The user account is granted permission to all other job
services so that the user can schedule jobs to affect change
on the managed systems 128 associated with the ‘Sample-
App’ project.

As another example, a new system to be managed is
added to an organization’s IT infrastructure. In this case the
new system can be registered with framework 102. A system
administrator logs into the web interface 150 or other
interface and navigates to the managed systems tools in the
interface. The manage system tools can correspond to
requests to managed system services 130. The administrator
selects to create a new managed system and supplies basic
information such as hostname, system specifications and
user information to access the system so that framework 102
can access the managed system. The administrator can also
supply information about instances of resources on the
managed system. For example, the administrator may indi-
cate that the new managed system hosts a database instance
and provide connection information for the database
instance. The administrator may be given the option to test
the connection to make sure the connection information
entered is valid. The administrator may also enable configu-
ration of the managed system by certain integrated software
(e.g., enable configuration of a router by a network configu-
ration software integrated with framework 102, enable con-
figuration of a database by a database change management
tool integrated with framework 102, etc.). The administrator
can further configure permissions for users of framework

10

15

20

25

30

35

40

45

50

55

60

65

10

102 to access the managed system (e.g., to limit those who
can configure the managed system). The new managed
system is made available to authorized users to schedule
jobs using the job services that utilize the enabled software
integration.

In a third example, a user executes a job on a managed
system. The user accesses framework 102 using a user
interface and initiates a search of managed systems in order
to find the managed system to test changes. On finding the
managed system in the search results, the user can use the
supplied controls in the interface to create a job that targets
the managed system. The user then enters or specifies a
document on his local machine or elsewhere that describes
the changes he wishes to forecast against the managed
system.

The user can submit a job request using provided user
interface controls. The job request, in one embodiment,
contains the following information: credentials (username &
password); type of job (which framework service and which
integrated software will perform the task) managed
system(s) on which to perform the job, any data needed by
the integrated software to affect change on the targeted
managed system(s) (e.g., application binary files to deploy,
a textual specification of access rules changes to make on a
firewall, an xml representation of database schema changes
or other change data).

The job request is routed through the access control API
162, which checks user permissions and, if appropriate,
grants approval to perform the job. Access control API 162
reconciles the user’s ability to perform the requested job
based on permissions information in framework database
109. If the job request is denied, an access denied response
can be returned to the user. If the job request is permitted, the
job request is then routed through job request manager 121.
Job request manager 121 determines that the job request is
a Forecast request for the integration software that manages
database schemas. Job request manager 121 enters the job
data in the framework database 109 with a status of “Started’
and then dispatches the job to the appropriate job service for
execution by the appropriate service and integrated soft-
ware. In this example, the job request is dispatched to
forecast service 118. Forecast service may call profile ser-
vice 114 and simulation service 112 and simulation service
112 may call snapshot service 108 as needed. The job is run
and job artifacts (report, logs, etc.) and a return code
indicating success or failure are returned to job request
manager 121. Job request manager 121 updates database
109 with the job artifacts and return code. The job status is
updated to ‘Complete’. The user can check the status of the
job, and inspect the job artifacts.

As another example, a user can perform a job that impacts
several managed systems. For example, an application
deployment may touch several different systems. In this
example, a user can configures a job to deploy the applica-
tion binaries, a job to update the relevant database scheme,
a job to configure monitoring routines for the deployed
applications and then group these jobs into a job group that
specifies if one job fails all changes already affected should
be reverted. If the job request is allowed, the job request can
be dispatched to multiple job orchestration service 116
which can coordinate dispatching the constituent jobs for
execution by the appropriate services and software integra-
tions. If any of the jobs in the job group fails, multiple job
orchestration service 116 can attempt to rollback changes.
The user can be alerted of the failure.

Embodiments of management system 100 can simulate
changes to a managed system and predict the results of

US 10,268,709 B1

11

proposed changes. Simulation service 112 can create or
maintain a model 180 of the current configuration of a
managed system 128. In some cases, the initial model 180
may be provided. In other cases, the initial model 180 may
be built using information from snapshot service 108 or
profile service 114. In some embodiments, the information
may be collected by snapshot service 108 or profile service
114 using integrated software components 140. For
example, according to one embodiment, snapshot service
108 can query an integrated software component 140 for a
current state of managed system 128 and return the current
state to simulation service 112 so that simulation service 112
may build a current state model 180. The information may
be provided in any suitable format consumable by simula-
tion service 112. In one embodiment, snapshot service 108
may provide the current state of a managed system as a set
of changes required to produce the current state. In this case,
simulation service may build an initial model 180 and
simulate proposed changes to model 180 in the same man-
ner.

Model 180 can model various configurable elements of
managed system 128 and the relationships between the
configurable elements. Depending on the managed system,
configurable elements may be any logical or physical aspect
that may be defined, modified, removed or otherwise con-
figured on a managed system 128. Examples of configurable
elements may include elements of a database schema, data-
base constraints, firewall rules, connections, hardware ele-
ments or other configurable aspects of managed system 128.
Relationships represent relationships between configurable
elements. Any number of parameters may be maintained for
a configurable element or relationship. In some embodi-
ments, model 180 can be an object model in which configu-
rable elements are represented by objects and relationships
by the relationships between objects.

To simulate a change, simulation service 112 can receive
a change log 185 that specifies changes to the configurable
elements or relationships. Simulation service 112 can trans-
late the changes into commands on model 180 and evaluate
the results of the commands against a set of rules to
determine if the commands result in an error. The rules can
include rules that would be enforced by the underlying
managed system 128 on the configurable element and per-
missions. The rules may also include user defined rules.
Simulation service 112 may also use profile information
returned by profile service 114 to determine the impact of a
change.

As the commands are run, model 180 can be updated and
the results of the simulation provided to forecast service 118,
which can report the results. Forecast service 118 can
generate a log or report of the results of the proposed
changes using the output of simulation service 112 and
profile service 114. If the simulation results in no errors (or
acceptable errors), the proposed changes can be deployed to
the managed system.

Turning now to database change management, manage-
ment system 100 can be configured as a database change
management system that facilitates authoring and migrating
database structure/schema changes from one database to
another. Management system 100 may perform database
schema management according to a deployment plan 190
that defines where databases are logically located and con-
nection information for the databases. Deployment plan 190
represents the general flow of schema changes and contains
database definitions having information needed to connect to
and inspect databases of interest and one or more steps
describing the flow of changes from one database to another.
The chain of database definitions and steps is not necessarily
linear or a directed acyclic graph. The links of steps may

20

35

40

45

12

converge, branch or be cyclic. One example of an interface
for defining a deployment plan is discussed in conjunction
with FIG. 11, below.

The user can submit proposed changes, which can be
stored in a change log 185 for the project. Change log 185
can include changesets. A changeset defines the changes to
be made to managed system 128 and includes operations
that are executed against the target database. A changeset
may also include instructions to reverse changes. A chang-
eset may be equivalent to one or more SQL statements, but
represented in a database-neutral format. In other embodi-
ments, a changeset can be specified in or include SQL or
other query language statements. One embodiment of an
interface for providing a changeset is discussed in conjunc-
tion with FIGS. 12A-12D.

According to one embodiment, snapshot service 108 can
query the current state of a managed database schema and
output a representation of the schema. As would be under-
stood by those of ordinary skill in the art, a database server
can provide a listing of database schema objects in response
to one or more quarries. Thus, by querying a database,
snapshot service 108 can determine, for example, the tables,
columns, constraints and other schema objects to produce a
snapshot of a database. The snapshot may be in a form
consumable by simulation service 112 or other service. The
schema objects provided in the snapshot can be mapped to
a model of the schema.

According to one embodiment, snapshot service 108 may
utilize an integrated software component 140 to retrieve the
schema snapshot. Liquibase, for example, can output a
snapshot of a schema as a set of changes required to create
the schema. In this case, the appropriate changesets can be
stored in change log 185, representing the current state of the
database. Proposed changes entered by the user can be
appended change log 185.

Profile service 114 can augment data provided by snap-
shot service 108 with any other data that might impact the
application of changes. According to one embodiment, for
example, profile service 114 may connect to a managed
database, read information from the schema as well as
summary information about data stored and record profile
information 195 in framework database 109 or other data
store. Examples of information that may be provided by
profile service 114 include, but are not limited to, row counts
of data tables, database engine parameters such as buffer
sizes, memory allocation, file system implementations, table
types, permission models (which users have permission to
change which structures). Profile service 114 may also test
database performance by recording the time it takes to
perform database operations. Profile service 114 can provide
a schema snapshot and light-weight data profile (e.g., row
counts and permission model) of a database useful for
forecasting the performance of database changes.

Additionally, simulation service 112 can simulate the
application of changesets on a database by running changes
against a model 180. Model 180 may be provided by a user,
another service or application. In other embodiments, simu-
lation service 112 may build model 180 representing the
baseline profile against which changes may be made and
apply proposed changes to the model. One example of a
model is discussed in conjunction with FIG. 4.

To build the model 180, simulation service 112 can map
schema objects as described in the snapshot to representa-
tions of the schema objects in the model. If the schema
objects from the snap shot are represented by changesets,
simulation service 112 can process change log 185 to build
the baseline model 180 from the snapshot changeset. Simu-
lation service 112 can further process change log 185 to
simulate proposed changes against model 180. One example

US 10,268,709 B1

13
of'building and updating a model is discussed in conjunction
with FIGS. 5A-5D and FIG. 6.

According to one embodiment, simulation service 112 can
map proposed changes to a database to commands run
against model 180 of the database to determine the impact
of'the changes. Simulation service 112 can predict any errors
or failures a deployment might encounter based on the
application of rules to the proposed changes. For database
schema changes, the rules applied can model rules used by
the underlying database. Simulation service 112 may also
use the permission model provided by profile service 114 to
predict the failure of an operation due to insufficient user
permissions. Job information (e.g., logs, return codes, model
of predicted system state, and errors) may be entered in the
framework database 109.

Forecast service 118 may combine output from simulation
service 112 and profile service 114 to predict failures and
performance of a proposed deploy job. Forecast service 118
may return a report for entry in the framework database 109.
In the case of database schema changes, it may combine
results of the simulation of proposed database changes to the
database model and profile information in order to predict
failures and performance. Forecast service 118 can use row
counts or other information to predict long-running opera-
tions and operations which destroy or alter large amounts of
data. The row counts coupled with database engine param-
eters, table types and database performance metrics allow
forecast service 118 to predict the time it takes to perform
the proposed changes in change log 185. The row counts
combined with the changes, in some cases, can be sufficient
to warn the user about amount of data altered or destroyed.

Deploy service 107 can act as a schema migration service
to effect changes in change log 185 to a managed database.
In some embodiments, the user provides identifier(s) for the
managed system(s) targeted and the data necessary to per-
form the desired change in a text, xml, or similar document,
as SQL or other queries or in another format. Deploy service
107 then may attempt to execute the change and return
whether the change succeeded or failed, as well as descrip-
tive information about the job (logs, reports, return codes,
etc.). In the event of the failure, a rollback function may be
implemented to revert all changes made by the job up to the
point of failure.

According to one embodiment, deploy service 107 can
connect to a database, lock the database (e.g., to prevent
another service from making changes) and inspect the
managed database or framework database 109 to determine
which changes sets in change log 185 have been run on the
managed database. As would be understood by one of
ordinary skill in the art changes, such as adding, modifying
and removing schema objects can be mapped to one or more
SQL commands. Accordingly, deploy service 107 can
assemble the appropriate SQL commands (e.g., SQL DDL
commands or other commands) for the unexecuted chang-
esets, issue the commands to the managed database. It can
be further noted that deploy service 107 may use an inte-
grated software component 140 to issue commands. In this
case, deploy service 107 can provide the changes to the
integrated software component 140 making the appropriate
requests or calls if necessary, to cause integrated software
component 140 to issue the appropriate SQL commands.

Deploy service 107 may also issue commands to reverse
changes if needed. Deploy service 107 can record the
execution of changes in the managed database or framework
database 109 (e.g., in a changelog table or other data
structure). Deploy service 107 can create a report and
populate a log with the results of the deployment.

10

15

20

25

30

35

40

45

50

55

60

65

14

While management system 100 is provided as one
embodiment of a database change management system, a
database change management system may be implemented
according to any suitable hardware or software architecture.
Furthermore, embodiments of management system 100 may
be configured to provide other types of systems manage-
ment.

FIG. 2 is a diagrammatic representation of one embodi-
ment of a simulation service 200 that simulates changes to
a database schema. Simulation service may be implemented
part of a database change management system, including a
database change management system as discussed in con-
junction with FIG. 1 (e.g., as an embodiment of simulation
service 112) or by another database change management
system. Simulation service 200 may include one or more
simulation engines. In general, a simulation engine can be a
package or library of computer code or instructions respon-
sible for aspects of running a simulation. The simulation
engine(s) simulate changes to a database structure, recording
events and messages, and generate report structures for
output. The rules applied by a simulation engine in perform-
ing a simulation may model the rules applied by the under-
lying database, user defined rules, permissions and other
rules.

Simulation service 200 can be implemented with one
monolithic engine or several smaller engines or libraries
chained together. In the latter scenario, a parent engine, in
one embodiment, delegates changes to each or some of its
collaborative engines and aggregates their output at the end
of the simulation, returning it to the caller of the service.
This modular approach to building the simulation service
allows speedy development and flexibility of design and
implementation. Engines may be built from different librar-
ies, different programming languages and different program-
ming paradigms (structured, object-oriented, or functional)
as needed.

Simulation service 200 may access an existing model 206
of a database schema or receive a set of schema information
202 and build model 206 of the database schema. Schema
information 202 can provide information on the identities
and parameters of schema objects in a database schema. As
is understood by those of ordinary skill in the art, there are
a variety of ways that a database change management
system can collect such information from a database and
such information may be presented in a variety of ways.
According to one embodiment, schema information 202
may include a set of snapshot changesets specifying the
changes that would be required to create the database
schema from an empty schema. Simulation service 200 can
map the schema information 202 to model 206. Preferably,
model 206 may be a database neutral model representing a
schema, tables in the schema, columns, constraints or other
database objects.

Simulation service 200 may also receive proposed
changes to simulate 208. If schema information 202 is also
provided as changes, changes to simulate 208 and schema
information 202 may be received as a change log including
snapshot changesets representing the baseline state of the
database schema and changesets representing proposed
changes. In other embodiments, schema information 202
and changes to simulate 208 may be received according to
other formats.

Simulation service 200 runs a simulation 204 that models
the application of changes to simulate 208 from the change
log in sequence. If schema information 202 is provided as
changes, simulation service 200 can build a baseline simu-
lation model 206 and execute the proposed changes, modi-

result in an error. The determination of whether an error

US 10,268,709 B1

15

fying simulation model 206 in volatile memory. In perform-
ing simulation 204, simulation service 200 may access
profile information 210 including, for example, row counts
of data tables, database engine parameters such as buffer
sizes, memory allocation, file system implementations, table 5
types, permission models (which users have permission to
change which structures.) Such information may be included

in the model 206 or be used to determine whether or not a

particular change would cause an error. For example, simu-
lation service 200 may access the permission model to
determine if the author of a change has the rights to make the
change and, if not, generate an error when the change is
applied to model 206.

Simulation service 200 can determine if a change would

10

15
would result may be based on applying the same rules as
would be applied to schema changes by the underlying
database, user defined rules or other rules. For example, a
command to drop a table or column that does not exist may
result in an error. As another example, an attempt to make a
primary key column nullable when the managed database
does not support non-null primary key column entries may

20

result in an error. Simulation service 200 can return a

simulation result 212 that includes a prediction of failure of
changes that, as authored, cannot succeed.

FIG. 3 is a diagrammatic representation of one embodi-
ment of processing a change log 302 by a simulation service,
such as simulation service 200 of FIG. 2. According to one
embodiment, a change log 302 may be provided according
to a defined data model. In the example of FIG. 3, one
embodiment of a class diagram for a change log 302 is
illustrated. Changelog 304 is a container for one or more
Changesets 306. A Changeset is container for one or more
Changes 310. A Change 310 contains a type of change 312
that maps to operations that can be executed in the database
being managed. The types of changes 312 can depend on the
type of database being managed or the changes supported by
the snapshot service or other component that provides
changesets.

A change log can be persisted as an XML file or other
format. The following provides one example of a change
log.

25

30

35

40

16

elements of change log 302 to commands 324 against
simulation model 328 according to defined mappings.
According to one embodiment, the simulation service can
include an interrogator factory 320 that can inspect each
change in change log 302 and map each change to an
interrogator object 322 to create an appropriate command.
The interrogator object 322 can be an instance of a decorator
class that provides a common interface to disparate wrapped
classes. For example, the interrogator classes can be used to
wrap change classes so that they can be used by the same
code. The use of interrogator factory 320 and interrogator
objects 322 is provided by way of example and not limita-
tion and change log elements can be mapped to commands
executable on the model (e.g., model 206 of FIG. 2) accord-
ing to any suitable mapping.

In executing commands 324, simulation engine 326
manipulates internal data to simulate the database schema.
Manipulations include but are not limited to creating a
schema model; adding a new table to a schema model,
changing the name of a table, removing a table, modifying
parameters of a table, adding a view to a schema model,
removing a view from a schema model, renaming a view,
modifying parameters of a view, adding a column to an
existing table, removing a column from a table, changing the
name of a column, changing the parameters of a column,
adding a constraint to an existing table, removing a con-
straint from a table, changing the name of a constraint,
changing the parameters of a constraint.

Simulation engine 326 may determine if a command
violates a set of rules 335, including permission rules (e.g.,
as determined by a permission model from profile informa-
tion 330), rules specified for the managed database (e.g., a
primary key column cannot be null) or results in an error. If
errors are encountered, the errors may be logged. For
example, a command to drop a table or column that does not
exist may result in an error. As another example, an attempt
to make a primary key column nullable when the managed
database does not support non-null primary key column
entries may result in an error. In some cases, errors may be
recorded, but the simulation continued to update the simu-
lation model. In other cases, the simulation can stop when an
error is encountered or other criteria met.

<?xml version="1.0" encoding="“UTF-8"?>

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog
xmlns:xsi=“http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.0.xsd”>

<changeSet id="1" author="jenkins”>
<createTable tableName="first_table”>
<column nanne=“id” type="int>
<constraints primaryKey="“true” nullable="false/>
</column>
<column name="“name” type="varchar(50)”>
<constraints nullable="false”/>
</column>
</createTable>
</changeSet>
<changeSet id="2" author="Pete”>
<createTable tableName=“new_table”>
<column nanne=“id” type="int">
<constraints primaryKey="“true” nullable="false/>
</column>
</createTable>
</changeSet>
</databaseChangeLog>

65
The simulation service can hold a sequence of change log
elements in memory, for example RAM, and map the

Simulation engine 326 can log warnings or errors asso-
ciated with the changes that caused them and the context of

US 10,268,709 B1

17

the error including the state of the model at the time;
performance of the change (time duration, number of rows
viewed, number of values viewed, number of rows deleted,
indices rebuilt); necessary security permissions or violations
of permission settings; results of applying user-defined
rules; advice for the user based on common usage patterns;
effects of parameter substitution and context-sensitive
changes; generation of instructions and schema objects
based on included data files.

FIG. 4 is a diagrammatic representation of one embodi-
ment of a simulation model class diagram 400. In the
example shown, DbModel 402 is a root level object through
which the simulation output may be accessed. In particular,
DbModel 402 gives access to schema models 406 and
messages 404.

In some embodiments, messages 404 represent a message
for the user, for example, indicative of errors encountered
during the simulation; performance descriptions, such as
number of rows read, rows changed or values deleted; and
suggestions for schema changes, such as adding an index on
a foreign key that does not yet have an index.

Schema models 406 are models of a schema of a database.
Schema models 406 may include Tables 408, views 410,
sequences, and other schema objects. A Table 408 describes
a table in a database. In some embodiments, a Table 408 can
reference a row count as provided by a profile from the
profile service. A Table 408 may reference vendor-specific
or engine-specific tuning parameters. A Table 408 may be
related to one or more Columns 412, which models a column
in a database.

Tables 408 may also be related a variety of constraints
414-420. FkConstraint 414 models foreign key constraints
on columns in a Table 408. PkConstraint 416 models a
primary key constraint on a Table 408. NotNullConstraint
418 models a data constraint on a column on a Table 408
requiring the data to be filled out as something other than
NULL. UniqueConstraint 420 models a data constraint on a
column requiring the column to have unique data for every
row in the table.

FIG. 4 provides one example of a database neutral model,
though other models may be used. A database neutral model
facilitates comparing schemas of multiple databases, includ-
ing databases of different types. A baseline model for a
database schema may be provided or built. According to one
embodiment, a database change management system may
receive a set of schema information and create a baseline
schema model according to FIG. 4 or other model. The
database change management system may process snapshot
information to build a model, though for a new database the
schema model may be empty. In one example embodiment,
changes in a change log to add, remove or modify tables,
columns or constraints can be mapped to commands execut-
able on the model to add, delete, modify tables, columns and
constraint objects from the model.

Moreover, the simulation model does not require repli-
cating the record data from tables and can be relatively small
compared the size of the database. Even for relatively large
databases, the model can be manipulated in memory.

While the foregoing example simulation model illustrates
objects for tables, columns and constraints, other database
objects may also be represented including but not limited to
views, stored procedures, functions, triggers, check con-
straints, materialized views, synonyms, types, packages,
sequences or any other object in the database. By way of
example, but not limitation, a view object may be related to
a schema, table, another view or materialized view, a trigger,
a constraint, a grant, a package, a sequence and include the

15

20

30

40

45

18

view definition, dependencies on other objects; a stored
procedure object may be related to any object in the database
and include instruction code and references to other objects;
a function object may be related to any object in the database
and include instruction code and references to other objects;
a check constraint object may be related to a table, view,
materialized view and include the instruction code imple-
menting or describing the constraint and references to any
other object in the database; a trigger object may be related
to a table, view, materialized view, a schema, a catalog or the
entire database and include instruction code implementing
or describing the trigger and references to any other object
in the database; a sequence may be related to any other
object in the database and may include instruction code
implementing or describing sequence and references to other
objects in the database.

FIGS. 5A-5C are diagrammatic representations illustrat-
ing one embodiment of creating or modifying a simulation
model. In the example illustrated, the following hypothetical
set of changes (e.g., represented in changesets) are consid-
ered: (1) add table “People” with an “id” column, “name”
column, “email” column, “address” column and “phone”
column; (2) add table “Account” with an “id” column,
“accountNum” column and “accountName” column; (3) add
column “accountid” to table “People”; (4) Add foreign key
constraint “PeopleAccount]D” to “People” table.

The simulation service begins the simulation with change
elements and an empty model in memory. FIG. 5A provides
a diagrammatic representation of one example of an empty
model. In the example illustrated, the empty model includes
a dbmodel 502; associated schemamodel 506, including
tables 508 and constraints 510; and messageList 504.

With reference to FIG. 5B, to (1) add the “People” table,
the simulation service constructs the peopleTable object 512
and column models idColumn 516, nameColumn 518,
emailColumn 520, addressColumn 522, phoneColumn 524,
and pkConstraint 526. The simulation service further adds a
reference to peopleTable 512 to the tables list 508 of the
schemamodel 506 and a reference to column models idCol-
umn 516, nameColumn 518, emailColumn 520, addressCol-
umn 522, phoneColumn 524, and pkConstraint 526 in the
associated peopleTableColumnList 514.

With reference to FIG. 5C, to (2) add the “Accounts”
table, the simulation service constructs accountsTable object
528 to represent the “Accounts” table and column objects
accountColumn 532, accountNumColumn 534, and
accountNameCol 536. The simulation service adds the
accountTable object to the list of tables 508 in the schema
and a reference to column object accountColumn 532,
accountNumColumn 534, and accountNameCol 536 in
accountTableColumnl.ist 530.

As shown in FIG. 5D, to (3) add column “accountid” to
the “People” table, the simulation service constructs people-
AccountldColumn 538 and adds a reference to peopleAc-
countldColumn 538 to list 514 of columns for the peopleT-
able object 512. Finally, to (4) add foreign key constraint
“PeopleAccountID”, the simulation creates the foreign key
constraint object fkConstraint 540 and a reference to a list of
constraints 542 for the peopleTable object 512. When the
simulation is complete, the model can be returned to the
caller of the service. In some cases, for example, the caller
may be a forecast service or other service or application.

Embodiments allow for simulation of new databases as
well as established databases. In one embodiment, for estab-
lished databases, the current schema is read from the data-
base and saved as a change log. This change log is used for
the project. The simulation service can append additional

US 10,268,709 B1

19

changes to the change log or insert them in the middle of the
change log. While in the above example the database model
is built from the change log, the baseline schema model may
also be built by traversing the database schema, processing
other data structures that reveal the database schema or
using other database modeling techniques known or devel-
oped in the art.

It can be noted that change steps may be specified with
SQL fragment text. In some embodiments, the database
change management system may be provided with language
grammars, recognizers and parsers to interpret the text, build
command parameters and model the effect the changes will
have on the schema when run on the actual database.

As would be understood by those of ordinary skill in the
art, in some cases mapping an SQL operation or set of
operations to a command on a model can be relatively
straightforward. However, other operations may be more
complex. For example, a change to create a view may be
largely specified with SQL fragment(s) such as:

SELECT name,phone,accountnum
FROM people JOIN
people.accountld=accounts.id

The simulation service can use a modified SQL parser,
grammar and recognizer to construct an abstract syntax tree
(AST). The AST can be reduced to an in-memory model of
the meaning of the SQL fragment. FIG. 6 is a diagrammatic
representation of one embodiment of an AST. The simula-
tion service can then verify the contents of the AST against
the database model of tables and columns. For example, if
tables or columns represented in the AST do not appear in
the schema model, an error can be generated.

If no errors are detected, the database model can then be
amended with a new view object with three columns: name,
phone and account number. In the example of FIG. 6, the
columns of the view are the same as described by their
tables.

Turning now to FIG. 7, shown is a diagram schematically
illustrating an example profile service 800 and snapshot
service 810. The profile service 800 may be an embodiment
of the profile service 114 of FIG. 1 or other profile service
and snapshot service 810 may be an embodiment of snap-
shot service 108 of FIG. 1 or other snapshot service.

Profile service 800 provides for capturing database infor-
mation 802 about a database 801. Information captured may
include the schema structure 804, as well as additional
information 802 that may be used for predicting the success
or failure of applying a change log (i.e., a collection of
changesets) to that database. This database information 802
may include, in one embodiment: row counts of data tables;
database engine parameters such as buffer sizes, memory
allocation, file system implementations; table types such as
innodb, mysam; permission models (i.e., which users have
permissions to change which structures); and tests of the
database performance (i.e., records of the time it takes to
perform database operations).

As shown in the figure, profile service 800, according to
one embodiment, connects to a database 801, e.g., using
JDBC (or other database connectivity); reads information
from the schema 804 as well as the additional information
802 about the data; and records the information in a profile
data structure 806 and/or in XML format 808 on disk or
other storage. The recorded profile from the profile service
800 may be used by a simulation service and a forecast
service or other service. The simulation service and forecast
service can use row counts or other information to predict
long-running operations and operations which destroy or
alter large amounts of data. The row counts coupled with

accounts ON

10

20

25

30

35

40

45

50

55

60

65

20

database engine parameters, table types and database per-
formance metrics may allow the simulation service and
forecast service to predict the time it takes to perform the
changes in the change log. The row counts combined with
the changes may warn the user about amounts of data altered
or destroyed. A permission model may be used for the
simulation and forecast service to predict the failure of an
operation due to insufficient user permissions.

Snapshot service 810 can connect to a database using
JDBC or other mechanism and inspect the schema of the
database. Snapshot service can provide a snapshot 812 of a
schema (e.g., which may be used as schema information
202). Snapshot 812 can provide information on the identities
and parameters of schema objects in a database schema. As
is understood by those of ordinary skill in the art, there are
a variety of ways that a database change management
system can collect such information from a database and
such information may be presented in a variety of ways.
Snapshot service 810, according to one embodiment, can use
the Liquibase engine for generating snapshots of a database.
In other embodiments, other schema generation engines
known or developed in the art may be used or snapshot
service 810 can query the database for the schema objects.
Snapshot 812 may include a set of snapshot changesets
specifying the changes that would be required to create the
database schema from an empty schema.

FIG. 8 is a diagrammatic representation of one embodi-
ment of a forecast service The forecast service 900 can
receive reports from a reporting service 904, models and
other output of the simulation service 906, profiles from the
profile service 903, rules sets as defined by the user 908,
permission models 910 and other inputs 912 to generate an
HTML report (or other type of report) 902 predicting the
success or failure of the changes in the change log accom-
panied by context, details, corrective actions and recom-
mendations. According to one embodiment, the depth of
information gathered during the simulation and forecast
process and delivery of the report allows for a report
containing the contexts of changes, entity-relationship dia-
grams, animations and interactive capabilities based, for
example, on javascript and HTMLS. According to one
embodiment, the report can be viewed in an HTML browser
embedded in the application as well as third party browsers
launched from the application via the operating system

FIG. 9 is a flowchart illustrating one embodiment of a
simulation process. According to one embodiment, the steps
of FIG. 9 may be implemented by a database change
management system. At step 1002 a set of changes for a
database can be received, for example as changesets from a
change log. A model of the database schema of the database
to be changed can be loaded (step 1004). In some cases, the
model may be empty and can be built from snapshot data,
including, in some cases from a set of changes.

The database change management system may select one
of'the changes from the change log (step 1006) and evaluate
the change against the simulation model and rules (step
1008). If an error is detected (step 1010), an error may be
recorded (step 1012). However, if no error is detected, then
the simulation model is manipulated to simulate the change
(step 1014) and change measurements may be recorded (step
1016). In some embodiments, the model may be manipu-
lated to simulate a change even if an error is recorded. This
process may be repeated for each change (step 1018).

If an error is generated (step 1012), the simulation service
may terminate the simulation, record the error and process
the next change without manipulating the model for the
change or generate the error and manipulate the model

US 10,268,709 B1

21

according to the change. Whether the simulation is stopped
or model updated to reflect a change in light of an error can
be a matter of configuration and may depend on the type of
change and error encountered. The steps of FIG. 9 may be
repeated as needed or desired, performed in different orders.
Some steps may be omitted and additional steps added.

The rules for determining whether a change will result in
an error can include rules similar to those that would be
applied by an underlying database, user defined rules or
other rules. The following provides some example embodi-
ments of evaluating changes. According to one embodiment,
if a change is requested to add a table, the model of the
database can be evaluated to determine if a table object
already exists in the schema model. If so, an error can be
generated. Otherwise a representation of the table can be
added to the model.

If a change is requested to remove a table, the model can
be evaluated to determine if a table object for the table exists
in the model. If not, an error can be generated. If a table is
represented in the model, the representation of the table can
be removed or the model further evaluated before removal.
For example, if a table is associated with columns in the
model, an error can be generated because some database
systems do allow deletion of tables without deletion of
columns or it may be desirable to warn a user that a change
will delete a non-empty table. In another embodiment, an
error can be generated if the columns referenced by the table
object are also referenced by a constraint. For example, it
may be desirable to generate an error if a column in a table
is referenced by foreign key constraint to maintain integrity
in the database. In some cases, the representation of the table
may be removed from the simulation model, even if an error
is logged.

If'a change is requested to add a column, the model of the
database can be evaluated to determine if the table to which
the column is to be added is represented in the model. If the
model does include a representation of the containing table,
an error can result. If a change is requested to remove a
column, the model can be evaluated to determine if the
column is represented in the model and, if not, an error
generated. If the column is represented, the representation of
the column can be removed from the model or the model
further evaluated. For example, if a column is referenced by
a constraint, an error may be generated. This can prevent
removing a column in a table that is referenced by a foreign
key constraint in another table. In some cases, the represen-
tation of the column may be removed from the simulation
model, even if an error is logged.

If a change is requested to add a constraint, the model of
the database can be evaluated to determine if the table to
which the constraint is to be added is represented in the
model and, if not, an error can be generated. Similarly, the
model can be evaluated to determine if all tables or columns
referenced by a constraint are present in the model and, if
not, an error can be generated. Additionally, referential
integrity, uniqueness, nullity may checked for columns
referenced by key constraints. In some cases, the represen-
tation of the constraint may be added from the simulation
model, even if an error is logged.

If a change is requested to delete a constraint, the model
can be checked to determine if the constraint is represented
in the model. If the constraint is not represented in the
model, and error can be logged. If the constraint is repre-
sented in the model, deletion of the constraint can be
checked against other constraints to determine errors.
According to one embodiment, for example, a request to
remove a primary key constraint or uniqueness constraint on

25

30

40

45

22

a column that is referenced by a foreign key constraint may
result in an error. In some cases, the representation of the
constraint may be removed from the simulation model, even
if an error is logged.

If a change is requested to add or modify a trigger to a
table, view, materialized view, schema, catalog or database,
the model of the database can be evaluated to determine if
the object to which the trigger is to be added is represented
in the model and, if not, an error can be generated. Similarly
the model can be evaluated to determine if all tables, views,
columns, functions, stored procedures or other database
objects referenced by the trigger are present in the model,
and if not, an error can be generated. In some cases, the
representation of the trigger may be added to the simulation
model even if an error is logged. If a change is requested to
delete a trigger, the model can be checked to determine if the
trigger is represented in the model. If the trigger is not
represented in the model, an error can be logged.

If a change is requested to add a type to a schema, catalog
or database, the model of the database can be evaluated to
determine if the type already exists and if so, an error can be
logged. If the type does not already exist, the model can be
updated with the new type. According to one embodiment,
the model can be evaluated to determine if all types con-
sistently reference other types and other database objects
(tables, columns, views) and log errors when inconsistencies
(a referenced type, referenced column, referenced table or
referenced view does not exist) are found in the model.

If a change is requested to modify a type in a schema,
catalog or database, the model of the database can be
evaluated to determine if the type already exists and if it
does not yet exist, an error can be logged if the type does
exist, the model can be updated with the new model of the
type. According to one embodiment, the model can be
evaluated to determine if all types in the model consistently
reference other types and other database objects (tables,
columns, views) and log errors when inconsistencies (a
referenced type, referenced column, referenced table or
referenced view does not exist) are found in the model.

If a change is requested to remove a type from a schema,
catalog or database, the model of the database can be
evaluated to determine if the type already exists and if it
does not yet exist, an error can be logged. If the type does
exist, the model can be updated to remove the type. Accord-
ing to one embodiment, the model can be evaluated to
determine if all types in the model consistently reference
other types and other database objects (tables, columns,
views) and log errors when inconsistencies (a referenced
type, referenced column, referenced table or referenced view
does not exist) are found in the model.

If a change is requested to add or modify a synonym to a
schema, catalog or database, the model of the database can
be evaluated to determine if the synonym already exists in
the model. The model can be updated to include the new
synonym definition, replacing an old synonym of the same
name, if a change is requested to remove a synonym, the
model of the database can be updated to remove the syn-
onym. According to one embodiment, the model of the
database can then be evaluated to determine if any database
object references any synonym and generate errors if named
objects do not reference either a synonym or another object
with the given name. According to one embodiment, the
model of the database can be evaluated to determine if any
synonyms reference objects in the database that do not exist.

If a change is requested to add a sequence, the model of
the database can be evaluated to determine if the sequence
already exists in the model, and if it already exists, an error

US 10,268,709 B1

23

can be logged. If the sequence does not yet exist, the model
can be updated to add the sequence.

If a change is requested to modify a sequence, the model
of'the database can be evaluated to determine if the sequence
already exists in the model, and if it does not already exist,
an error can be logged. If the sequence does exist, the model
can be updated with the new definition of the sequence.

If a change is requested to remove a sequence, the model
of'the database can be evaluated to determine if the sequence
already exists in the model, and if it does not already exist,
an error can be logged. If the sequence does exist, the model
can be updated representing the removal of the sequence.
According to one embodiment, the model can be evaluated
to determine if the sequence to be removed is referenced by
another database object, such as a trigger, table, check
constraint, view, materialized view, function, procedure or
package. If objects represented in the model reference the
sequence to be removed by the change, an error can be
logged.

Requests to modify objects can be evaluated to determine
if the particular object is represented in the model. If not, an
error can be generated. The request can also be evaluated to
determine if the modification violates a constraint or rule
and, if so, an error can be generated. In some cases, the
model may be updated to reflect the modification, even if an
error is logged.

Additionally, for each request, the user requesting a
change can be evaluated against permissions and the table,
column, constraint and other parameters evaluated against
rules to determine if the change is permissible. The rules can
reflect rules applied by the underlying database and user
defined rules.

FIG. 10 is a diagrammatic representation of one embodi-
ment of a workflow for a database change management
system to produce a forecast. Information for a project can
be provided, such as databases of interest, a project name,
connection settings, and configuration information (step
1102). This may involve prompting the user to create a
project and setting up connection information for connecting
to databases.

Once the connection information for connecting to the
database(s) is provided, the database change management
system can connect to databases and review the state of
database schemas (step 1104) and generate a change log
(step 1106). If a database has only been just created, the
database will be mostly empty. The database change man-
agement system can retrieve profile information from the
database (step 1108).

A user can review the change log (step 1110) or other data
representing the database schema and enter proposed
changes (step 1114). According to one embodiment, for
example, the author can author changes in the change log
and changesets.

The change log and the profile are used to produce a
forecast (step 1112) forecasting the effects of those changes.
The user may review the forecast (step 1120) and edit the
change log accordingly (step 1114). The user may simulate
the changes again (step 1116) and/or apply the changes in the
change log to the database schema (step 1118). The report
and SQL run log can be preserved on disk or elsewhere from
this operation for later inspection.

This process can be repeated over the duration of a
project. According to one embodiment, users may email,
copy and print reports from forecasts, simulations and
applications of change logs while collaborating with their
colleagues. Users can also attach these reports to entries in
change tracking systems.

10

15

20

25

30

35

40

45

50

55

60

65

24

A database change management system can provide
access to application functionality, including authoring
changes by manipulating the change log and authoring
changes using an interactive change wizard. According to
one embodiment, a GUI module can call services of a
software framework (e.g., framework 102) to accomplish
tasks based on user interactions with the GUI. According to
one embodiment, the GUI may be based on Eclipse RCP and
Eclipse Modeling Framework, a Web/HTMIL/Javascript
framework or other framework.

FIG. 11 is an example of a screen shot of a GUI 1200. In
GUI 1200, a deployment plan is illustrated for deploying
changes from a development database to a QA database to
a production database. In general, a deployment plan rep-
resents the general flow of schema changes in an organiza-
tion. A deployment plan, according to one embodiment,
contains one or more (usually several) database definitions
(DbDef’s) to connect and inspect databases; one or more
steps describing the flow of changes from one database to
another).

In the example illustrated, at 1202, the GUI displays a
folder TXDrilling and a menu structure including associated
change logs, deployment plans for associated databases,
reports, and snapshots, and may additionally show other
components. The GUI may be interactive to allow a user of
the GUI to switch between views, reveal more information
about displayed components and the like.

In general, the GUI may display various pieces of infor-
mation including, but not limited to, a project model, a
change log, a deployment plan and/or other components. As
shown at 1204, the GUI 1200 may display individual
databases txdev, TXQA, and TXProduction. Controls may
allow for implementing a forecast, deploy, snapshot, etc. In
addition, in some embodiments, the schema version is also
identified.

In some embodiments, the GUI may support a change
authoring wizard to guide a user through authoring a new
change. The change authoring wizard may present the user
with tables, columns and other schema objects that are
appropriate based on a simulated schema model resulting
from applying the previous changes. This model is built by
the simulation service based on the changesets available in
the project.

FIG. 12A-FIG. 12D show screenshots of one embodiment
of a change authoring wizard. According to one embodi-
ment, the options presented in any step may be based on the
user’s permissions.

As shown in FIG. 12A, the user may specify a changelD
and an author name. In some embodiments, each change can
be uniquely identified by the change log file, a changelD and
the author’s name. As shown in FIG. 12B, the user may
select which change type to create. In the embodiment
illustrated, these can include new object creation, existing
object modification, or existing object deletion. As shown in
FIG. 12C, the GUI can present the names of schema objects
(table names, column names, stored procedure names, etc.)
based on the results of simulation of all of the previous
changes as well as other changesets and snapshots available
in the project. The user can choose which objects the change
will act upon. As shown in FIG. 12D, the GUI presents a
summary of the new change to the user for approval.

FIG. 13 depicts an interface providing the new change in
a change log with the change from FIGS. 12A-12C high-
lighted. If the user cancels a change, the system can revise
the change log, close the wizard and display a view previous
to the wizard.

US 10,268,709 B1

25

In addition to implementing deployment plans provision
can be made for displaying deployments that involve a large
number of databases. Such displays may be based, for
example, on snapshots or profiles obtained using the snap-
shot and profile service respectively. Alternatively, such
displays may be based on portions of such snapshots or
profiles.

For example, shown in FIG. 14A is a tabular view in
which properties of deployment steps are shown in rows
across columns. In the example illustrated, columns repre-
sent database definitions (DbDef), Versions, Servers, and
Database identifiers. Databases are grouped according to
deployment environment. In the example illustrated, these
are Development (Dev), Quality Assurance (QA), and Pro-
duction environments. In other embodiments, additional or
fewer environments may be in use or displayed

As illustrated, the deployments are listed alphabetically
according to DbDef, although in some embodiments,
deployments may be listed alphabetically according to any
of the columns or be otherwise listed. In addition, in some
embodiments, some deployments may be highlighted as
being of note according to predetermined criteria. For
example, in the embodiment illustrated, Versions Demo-32
in both Dev and Production are highlighted as being “out-
liers,” i.e., several versions behind others in development or
deployment.

FIG. 14B illustrates an example of a cluster view showing
the same databases and deployments as in FIG. 14A. In this
case, databases are represented by oval icons and square
icons and grouped according to deployment phase. In the
example illustrated, the oval icons represent databases that
meet particular criteria, while the square icons represent
those that do not. For example, as in FIG. 14A, the square
icons could represent databases that are versions behind
others.

Finally, FIG. 14C illustrates an example radar view 1502
of the same databases and deployments of FIG. 14A and
FIG. 14B. The radar view 1502 can be divided into sectors
based or depending on the number of development environ-
ments. In the example illustrated, the radar view 1502 is
divided into four quadrants (QA, Dev, Prod, and unnamed),
although there are only three development environments.
Thus, depending on the embodiment, the radar view 1502
could be divided into a number of sectors equal to the
number of development environments or greater than or less
than the number of development environments.

In the radar view 1502, icons representing databases are
plotted in sectors and at radii based on state, revision, or step
classification. Thus, for example, in the Dev environment
sector, two icons corresponding to Dem-43 are provided at
the outer edge (farthest from center) to indicate that these are
the most advanced versions. Four others, representing the
Demo-32 databases, are located closer to the center, indi-
cating they are in a less advanced stage.

In some embodiments, the display of the icons may be
scaled consistently across the sectors, although in others, the
display of icons is only scaled within each sector. Thus, for
example, in the Prod environment sector, the databases at
Demo-32 are at the outermost edge of the sector and
apparently at the same distance as the Demo-43 databases
from the Dev sector. The radar view is particularly well
suited to large numbers of databases, complex deployment
plans and use in dashboards and augmented reality systems.

FIG. 15 is a diagrammatic representation of one embodi-
ment of a topology for database change management com-
prising a set of development computing devices (computing
device 1600 and computing device 1602) with access to a

5

10

20

25

30

35

40

45

50

55

60

65

26

development database 1608, a QA stage computing device
1604 with access to a QA database 1610 and a production
environment computing device 1606 with access to a pro-
duction database 1612. Each computing device may com-
prise one or more processors, memories, interfaces and
computer readable media storing computer instructions
executable to provide a database change management sys-
tem including.

According to one embodiment, a database change man-
agement application on each computing device reads project
files 1616 and change log files 1614 from disk and connects
to database servers using JDBC or other connectivity. In
other embodiments, change log files 1614 and project files
1616 can be stored on a server that provides, for example,
version control.

The computing device on which the application is running
can connect to the database server to be changed over a
network. Access to database servers can be segregated to
specific teams or roles. Thus, for example, authorized users
in the development environment can access the development
database 1608, authorized users in the QA environment can
access QA database 1610 and authorized users for the
production environment can access production database
1612.

To provide some additional context, an example of data-
base change management in the context of software devel-
opment is provided. In this example, a software team can
assign a change ticket to a developer. The developer at
computing device 1600 checks out the project from version
control and determines a change to the database is necessary
to carry out the assignment. The developer uses the database
change management application to author a change to be
applied to databases and to forecast the effect of the change
using development database 1608. The developer may
repeat change authoring and forecasting until satisfied with
the result. The developer can then commit the change log file
to version control.

If the developer is not a database specialist, the developer
may seek additional review before committing changes. In
this circumstance, the developer can attach the forecast
report to a trouble ticket and request that a database analyst
review it. The database analyst may make a suggestion, and
assign the ticket back for improvement, or approve the
database change.

The developer or analyst can then assign the ticket to a
testing department. A tester checks out the project from
version control, reviews forecasts and executes the change
on a QA copy of the database 1610. If satisfied, the tester can
approve the ticket for deployment to production. A deploy-
ment specialist can check out the project from version
control, launch the database change management application
(e.g., at computing device 1606) and apply the change to one
or more production databases 1612. The deployment spe-
cialist can attach the logs from the database change man-
agement application to the change ticket.

FIG. 16 is a diagrammatic representation of another
embodiment of a topology for database change management
comprising a set of development computing devices (com-
puting device 1700 and computing device 1702), a QA stage
computing device 1704 and a production environment com-
puting device 1706. The computing devices may connect to
one or more servers including a version control repository
server 1708 and a continuous integration server 1710. Ver-
sion control server 1708 comprises one or more servers that
provide access to a version control repository. Continuous
integration server comprises one or more servers that run a
continuous integration program, such as the Jenkins con-

US 10,268,709 B1

27

tinuous integration code (available from www.jenkins-
ci.org) or other continuous integration program and a data-
base change management application. While shown
separately, a single server can provide version control,
continuous integration and database change management.

Continuous integration server 1710 can work in conjunc-
tion with version control server 1708 to automatically sched-
ule and execute tasks in response to changes made to files in
the version control repository. In this configuration, an
application can be used on a client computing device (e.g.,
computing device 1700, 1702, 1704 or 1706) to make
changes and commit them to version control. The continu-
ous integration server code can use a CLI interface or other
interface to the database change management application
running on the continuous integration server 1710 to affect
those changes on one or more database servers to, for
example, simulate and deploy changes to development data-
base 1714, QA database 1716 and production database 1718.
Users can adjust configuration of the database change man-
agement application and the continuous integration server
with standard web browsers or through other interfaces.

Providing a similar example to that discussed in conjunc-
tion with FIG. 15, a developer at computing device 1700 can
check out a project from version control and determine that
a change to a database is necessary to carry out an assign-
ment. The developer uses the database change management
application to author a change to be applied to databases and
to forecast the effect of the change using development
database 1714. The developer may repeat change authoring
and forecasting until satisfied with the result. The developer
can commit the change log file to version control.

Continuous integration server 1710 detects the change in
the version control repository and checks out the latest
changes. Continuous integration server 1710 runs a forecast
(e.g., using a forecast service). Continuous integration server
1710 can alert the software development team if the forecast
predicts a failure or can apply the changes to QA database
1716 and test the project software against the changed
database 1716. After testing is complete, continuous inte-
gration server 1710 can migrate the changes to production
database 1718.

FIG. 17 is a diagrammatic representation of another
embodiment of a topology for database change management
comprising a set of development computing devices (com-
puting device 1800 and computing device 1802), a QA stage
computing device 1804 and a production environment com-
puting device 1806. The computing devices may connect to
one or more servers including a database change manage-
ment web application server 1810 or a version control server
1808. Version control server 1808 comprises one or more
servers that provide access to a version control repository.
Database change management web application server 1810
comprises one or more servers that run web server code and
a database change management application. In some cases,
the web server code may be run on separate web servers and
the database change management web application on appli-
cation servers. While shown separately, a single server can
provide version control, web server functionality and the
database change management web application.

Users can access the database change management func-
tionality without running the application directly on their
computing device. The user can employ a standard web
browser on a computing device to connect to the database
change management web application server 1810. Database
change management web application server 1810 can com-
municate with version control server 1808 to store change
logs, project files and other information. Database change

10

15

20

25

30

35

40

45

50

55

60

65

28

management web application server 1810 connects to the
database servers to inspect the databases, simulate changes
and deploy changes to development database 1814, QA
database 1816 and production database 1818. In other
embodiments, a continuous integration server may also be
provided that detects changes in the version control reposi-
tory made by database change management web application
server 1810 and processes the changes in a similar manner
as discussed above.

While embodiments described herein have been discussed
primarily in terms of database change management, embodi-
ments may also be applied to management of other managed
systems including physical networking equipment (e.g.,
routers, switches, load balancers, firewalls, etc.), software
defined networks, servers and server stacks (e.g., web server,
application server, email, DNS, etc.), mainframes, mobile
devices (e.g., phones, tablets, watches, or other mobile
device), home automation equipment (e.g., IP cameras,
thermostats, light switches, lights, alarms, window cover-
ings (internal & external)) and other systems from which
configuration can be collected can be managed. Changes to
various configuration data can be simulated using a model
representing configuration objects that can be added, deleted
or modified and the results forecast. Examples of configu-
ration data include, but are not limited to, application
settings network information, security information, module
and add-on configurations, hostnames, database connec-
tions, user accounts, IP addresses and other configuration
information.

Reference throughout this specification to “one embodi-
ment”, “an embodiment”, or “a specific embodiment” or
similar terminology means that a particular feature, struc-
ture, or characteristic described in connection with the
embodiment is included in at least one embodiment and may
not necessarily be present in all embodiments. Thus, respec-
tive appearances of the phrases “in one embodiment”, “in an
embodiment”, or “in a specific embodiment” or similar
terminology in various places throughout this specification
are not necessarily referring to the same embodiment. Fur-
thermore, the particular features, structures, or characteris-
tics of any particular embodiment may be combined in any
suitable manner with one or more other embodiments. It is
to be understood that other variations and modifications of
the embodiments described and illustrated herein are pos-
sible in light of the teachings herein and are to be considered
as part of the spirit and scope of the invention.

In the description herein, numerous specific details are
provided, such as examples of components and/or methods,
to provide a thorough understanding of embodiments of the
invention. One skilled in the relevant art will recognize,
however, that an embodiment may be able to be practiced
without one or more of the specific details, or with other
apparatus, systems, assemblies, methods, components,
materials, parts, and/or the like. In other instances, well-
known structures, components, systems, materials, or opera-
tions are not specifically shown or described in detail to
avoid obscuring aspects of embodiments of the invention.
While the invention may be illustrated by using a particular
embodiment, this is not and does not limit the invention to
any particular embodiment and a person of ordinary skill in
the art will recognize that additional embodiments are
readily understandable and are a part of this invention.

Embodiments discussed herein can be implemented in a
computer communicatively coupled to a network (for
example, the Internet), another computer, or in a standalone
computer. As is known to those skilled in the art, a suitable
computer can include a central processing unit (“CPU”), at

US 10,268,709 B1

29

least one read-only memory (“ROM?”), at least one random
access memory (“RAM?”), at least one hard drive (“HD”),
and one or more input/output (“I/O”) device(s). The /O
devices can include a keyboard, monitor, printer, electronic
pointing device (for example, mouse, trackball, stylus, touch
pad, etc.), or the like. In embodiments of the invention, the
computer has access to at least one database over the
network.

ROM, RAM, and HD are computer memories for storing
computer-executable instructions executable by the CPU or
capable of being compiled or interpreted to be executable by
the CPU. Suitable computer-executable instructions may
reside on a computer readable medium (e.g., ROM, RAM,
and/or HD), hardware circuitry or the like, or any combi-
nation thereof. Within this disclosure, the term “computer
readable medium” or is not limited to ROM, RAM, and HD
and can include any type of data storage medium that can be
read by a processor. For example, a computer-readable
medium may refer to a data cartridge, a data backup mag-
netic tape, a floppy diskette, a flash memory drive, an optical
data storage drive, a CD-ROM, ROM, RAM, HD, or the
like. The processes described herein may be implemented by
execution of suitable computer-executable instructions that
may reside on a computer readable medium (for example, a
disk, CD-ROM, a memory, etc.). Alternatively, the com-
puter-executable instructions may be stored as software code
components on a direct access storage device array, mag-
netic tape, floppy diskette, optical storage device, or other
appropriate computer-readable medium or storage device.

Any suitable programming language can be used to
implement the routines, methods or programs of embodi-
ments of the invention described herein, including C, C++,
Java, JavaScript, HTML, or any other programming or
scripting code, etc. Other software/hardware/network archi-
tectures may be used. For example, the functions of the
disclosed embodiments may be implemented on one com-
puter or shared/distributed among two or more computers in
or across a network. Communications between computers
implementing embodiments can be accomplished using any
electronic, optical, radio frequency signals, or other suitable
methods and tools of communication in compliance with
known network protocols.

Different programming techniques can be employed such
as procedural or object oriented. Any particular routine can
execute on a single computer processing device or multiple
computer processing devices, a single computer processor or
multiple computer processors. Data may be stored in a single
storage medium or distributed through multiple storage
mediums, and may reside in a single database or multiple
databases (or other data storage techniques). Although the
steps, operations, or computations may be presented in a
specific order, this order may be changed in different
embodiments. In some embodiments, to the extent multiple
steps are shown as sequential in this specification, some
combination of such steps in alternative embodiments may
be performed at the same time. The sequence of operations
described herein can be interrupted, suspended, or otherwise
controlled by another process, such as an operating system,
kernel, etc. The routines can operate in an operating system
environment or as stand-alone routines. Functions, routines,
methods, steps and operations described herein can be
performed in hardware, software, firmware or any combi-
nation thereof.

Embodiments described herein can be implemented using
control logic in software or hardware or a combination of
both. The control logic may be stored in an information
storage medium, such as a computer-readable medium, as a

10

15

20

25

30

35

40

45

50

55

60

30

plurality of instructions adapted to direct an information
processing device to perform a set of steps disclosed in the
various embodiments. Based on the disclosure and teachings
provided herein, a person of ordinary skill in the art will
appreciate other ways and/or methods to implement the
invention.

It is also within the spirit and scope of the invention to
implement through execution of software programming or
code steps, operations, methods, routines or portions thereof
described herein, where such software programming or code
can be stored in a computer-readable medium and can be
operated on by a processor to permit a computer to perform
any of the steps, operations, methods, routines or portions
thereof described herein. The invention may be imple-
mented by using software programming or code executed by
a processor, by using application specific integrated circuits,
programmable logic devices, field programmable gate
arrays, optical, chemical, biological, quantum or nanoengi-
neered systems, components and mechanisms. In general,
the functions of the invention can be achieved by any means
as is known in the art. For example, distributed, or net-
worked systems, components and circuits can be used. In
another example, communication or transfer (or otherwise
moving from one place to another) of data may be wired,
wireless, or by any other means.

Examples of non-transitory computer-readable media can
include random access memories, read-only memories, hard
drives, data cartridges, magnetic tapes, floppy diskettes,
flash memory drives, optical data storage devices, compact-
disc read-only memories, and other appropriate computer
memories and data storage devices. In an illustrative
embodiment, some or all of the software components may
reside on a single server computer or on any combination of
separate server computers. As one skilled in the art can
appreciate, a computer program product implementing an
embodiment disclosed herein may comprise one or more
non-transitory computer readable media storing computer
instructions translatable by one or more processors in a
computing environment.

A processor can include a system with a central process-
ing unit, multiple processing units, dedicated circuitry for
achieving functionality, or other systems. Processing need
not be limited to a geographic location, or have temporal
limitations. For example, a processor can perform its func-
tions in “real-time,” “offline,” in a “batch mode,” etc.
Portions of processing can be performed at different times
and at different locations, by different (or the same) pro-
cessing systems.

It will also be appreciated that one or more of the elements
depicted in the drawings/figures can also be implemented in
a more separated or integrated manner, or even removed or
rendered as inoperable in certain cases, as is useful in
accordance with a particular application. Additionally, any
signal arrows in the drawings/Figures should be considered
only as exemplary, and not limiting, unless otherwise spe-
cifically noted.

As used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having,” or any other varia-
tion thereof, are intended to cover a non-exclusive inclusion.
For example, a process, product, article, or apparatus that
comprises a list of elements is not necessarily limited only
those elements but may include other elements not expressly
listed or inherent to such process, product, article, or appa-
ratus.

Furthermore, the term “or” as used herein is generally
intended to mean “and/or” unless otherwise indicated. For
example, a condition A or B is satisfied by any one of the

2 <

US 10,268,709 B1

31

following: A is true (or present) and B is false (or not
present), A is false (or not present) and B is true (or present),
and both A and B are true (or present). As used herein,

[Tt}

including the claims that follow, a term preceded by “a” or
“an” (and “the” when antecedent basis is “a” or “an”
includes both singular and plural of such term, unless clearly
indicated within the claim otherwise (i.e., that the reference
“a” or “an” clearly indicates only the singular or only the
plural). Also, as used in the description herein and through-
out the claims that follow, the meaning of “in” includes “in”
and “on” unless the context clearly dictates otherwise.

Although the invention has been described with respect to

specific embodiments thereof, these embodiments are
merely illustrative, and not restrictive of the invention. The
description herein of illustrated embodiments of the inven-
tion, including the description in the Abstract and Summary,
is not intended to be exhaustive or to limit the invention to
the precise forms disclosed herein (and in particular, the
inclusion of any particular embodiment, feature or function
within the Abstract or Summary is not intended to limit the
scope of the invention to such embodiment, feature or
function). Rather, the description is intended to describe
illustrative embodiments, features and functions in order to
provide a person of ordinary skill in the art context to
understand the invention without limiting the invention to
any particularly described embodiment, feature or function,
including any such embodiment feature or function
described in the Abstract or Summary. While specific
embodiments of, and examples for, the invention are
described herein for illustrative purposes only, various
equivalent modifications are possible within the spirit and
scope of the invention, as those skilled in the relevant art will
recognize and appreciate. As indicated, these modifications
may be made to the invention in light of the foregoing
description of illustrated embodiments of the invention and
are to be included within the spirit and scope of the inven-
tion. Thus, while the invention has been described herein
with reference to particular embodiments thereof, a latitude
of modification, various changes and substitutions are
intended in the foregoing disclosures, and it will be appre-
ciated that in some instances some features of embodiments
of the invention will be employed without a corresponding
use of other features without departing from the scope and
spirit of the invention as set forth. Therefore, many modi-
fications may be made to adapt a particular situation or
material to the essential scope and spirit of the invention.

What is claimed is:

1. A system for managing database changes, comprising:

a database server maintaining a database according to a
database schema;

a database change management system coupled to the
database server, the database change management sys-
tem including a processor and a non-transitory com-
puter readable medium storing computer executable
instructions executable to provide a set of services
comprising:

a snapshot service configured to query the database for
a current state of the database schema, determine a
set of database schema objects based on a response
to a query and output a snapshot comprising a first
set of changes representing the current state of the
database schema;

a profile service configured to collect database profile
information comprising row counts of tables;

a simulation service configured to:
build an in-memory model of the database schema

according to the first set of changes, the in-

10

15

20

25

30

35

40

45

50

55

60

65

32

memory model of the database schema compris-

ing a set of model objects related according to the

database schema of the database, the in-memory

model of the database schema incorporating at

least a portion of the database profile information,

wherein building the in-memory model comprises

loading an initial model in memory and applying

the first set of changes starting with the initial

model and wherein the set of model objects com-

prises:

table objects representing tables of the database;

column objects representing columns of the data-
base, each column object related in the in-
memory model to a corresponding table object
according to the database schema;

primary key constraint objects representing pri-
mary key constraints, each primary key con-
straint object related in the in-memory model to
a column object representing a column of the
database to which a corresponding primary key
constraint applies;

foreign key constraint objects representing foreign
key constraints, each foreign key constraint
object related in the in-memory model to a
column object representing a column of the
database to which a corresponding foreign key
constraint applies;

data constraint objects representing data con-
straints, each data constraint object related in
the in the in-memory model to a column object
representing a column to which a corresponding
data constraint applies;

access a set of rules comprising rules modelling rules

applied by the database and additional user
defined rules;

receive a second set of changes to be simulated for

the database;

simulate an application of the second set of changes

to the database, the simulating comprising:

selecting a change in the second set of changes as
a selected change;

mapping the selected change to a command on the
in-memory model;

determining if the command violates the set of
rules, wherein the simulation service is config-
ured to:
based on a determination that the command
violates the set of rules, log an error in asso-
ciation with the selected change and a corre-
sponding state of the in-memory model;
based on a determination that the command
does not violate the set of rules, manipulate the
in-memory model according to the command,
log performance of the selected change and
select a next change as the selected change;

a forecast service configured to:
receive a result of simulating the application of the

second set of changes to the database from the
simulation service and the database profile infor-
mation;

generate a report indicative of a prediction of a

failure based on the result including an error
indicative of failure or generate a report indicative
of a prediction of success based on the result
including no errors indicative of failure; and

US 10,268,709 B1

33

a deploy service configured to connect to the database
and issue commands to the database to deploy
changes from the second set of changes to the
database.
2. The system for managing database changes of claim 1,
wherein simulating the application the second set of changes
further comprises manipulating the in memory model
according to the selected change to update the in-memory
model of the database schema even if application of the
selected change would result in the error.
3. The system for managing database changes of claim 1,
wherein simulating application of the second set of changes
to the in-memory model of the database schema further
comprises iteratively repeating the selecting, mapping and
determining for each change in the second set of changes
until all the changes in the second set of changes have been
used as the selected change.
4. The system of claim 1, wherein determining if the
command violates the set of rules comprises determining if
the command is to modify the in-memory model in violation
of a set of constraints modeled in the in-memory model of
the database schema and wherein the simulation service is
configure to determine that the command violates the set of
rules based on a determination that the command is to
modify the in-memory model in violation of the set of
constraints.
5. The system for managing database changes of claim 1,
wherein the deployment service is configured to send SQL
commands to the database.
6. The system for managing database changes of claim 1,
further including a graphical user interface for viewing
multiple databases in a radar view, wherein the multiple
databases are plotted in sectors and at radii based on a state,
revision, or step classification.
7. The system for managing database changes of claim 1,
wherein the profile information comprises a permissions
model, determining if the command violates the set of rules
comprises determining if an author of the selected change is
permitted to make the selected change based on the permis-
sions model and the simulation service is configured to
determine that command violates the set of rules if the
author of the selected change is not permitted to make the
selected change.
8. The system for managing database changes of claim 1,
wherein building the in-memory model further comprises:
iterating through the first set of changes in sequence;
for each change in the first set of changes to add a table,
creating a new table object in the in-memory model;

for each change in the first set of changes to add a column,
creating a corresponding column object in the in-
memory model, the corresponding column object
related in the in-memory model to a table object
representing a database table containing the column;

for each change in the first set of changes to add a primary
key constraint, creating a corresponding primary key
constraint object in the in-memory model;

for each change in the first set of changes to add a foreign

key constraint, creating a corresponding foreign key

constraint object in the in-memory model;

for each change in the first set of changes to add a data

constraint, creating a corresponding data constraint

object in the in-memory model.

9. The system for managing database changes of claim 1,
wherein determining if the command violates the set of rules
comprises determining if the command is to modify or
remove an object from the in-memory model that does not
exist in the in-memory model and wherein the simulation

10

40

45

50

55

34

service is configured to determine that the command violates
the set of rules based on a determination that the command
is to remove or modify the object that does not exist in the
in-memory model.

10. The system for managing database changes of claim
1, wherein determining if the command violates the set of
rules comprises determining if the command is to add a new
object to an object that does not exist in the in-memory
model and wherein the simulation service is configured to
determine that the command violates the set of rules based
on a determination that the command is to add the new
object to the object that does not exist in the in-memory
model.

11. The system for managing database changes of claim
10, wherein determining if the command violates the set of
rules comprises determining if all objects referenced by the
new object are represented in the in-memory model and
wherein the simulation service is configured to determine
that the command violates the set of rules based on a
determination that the new object references objects not in
the in-memory model.

12. The system for managing database changes of claim
1, wherein determining if the command violates the set of
rules comprises determining if the command is to add an
object that already exists to the in-memory model and
wherein the simulation service is configured to determine
that the command violates the set of rules based on a
determination that the command is to add an object that
already exists in the in-memory model.

13. A method for database change management compris-
ing, at a first computing device communicatively coupled to
a database server:

opening a connection from the first computing device to

a database maintained by the database server;
querying the database for a current state of a database
schema;
collecting a snapshot of the database schema for the
database, the snapshot comprising a first set of changes
representing the current state of the database;

collecting database profile information comprising row
counts of tables;

receiving a set of proposed changes to the database

schema;

building an in-memory model of the database schema

according to the first set of changes, the in-memory
model of the database schema comprising a set of
model objects modelling tables, columns, primary key
constraints, foreign key constraints, and data con-
straints on columns of the database, the set of model
objects related according to the database schema of the
database, the in-memory model of the database schema
incorporating at least a portion of the database profile
information, wherein building the in-memory model
comprises loading an initial model in memory and
applying the first set of changes starting with the initial
model and wherein the in-memory model comprises:
table objects representing tables of the database;
column objects representing columns of the database,
each column object related in the in-memory model
to a corresponding table object according to the
database schema;
primary key constraint objects representing primary
key constraints, each primary key constraint object
related in the in-memory model to a column object
representing a column of the database to which a
corresponding primary key constraint applies;

US 10,268,709 B1

35

foreign key constraint objects representing foreign key
constraints, each foreign key constraint object
related in the in-memory model to a column object
representing a column of the database to which a
corresponding foreign key constraint applies;
data constraint objects representing data constraints,
each data constraint object related in the in the
in-memory model to a column object representing a
column to which a corresponding data constraint
applies;
accessing the model of the database schema in memory;
accessing a set of rules comprising rules modelling rules
applied by the database and additional user defined
rules;
simulating an application the set of proposed changes to
the database, the simulating comprising:
selecting a change from the set of proposed changes as
a selected change;
mapping the selected change to a command on the
in-memory model to update the in-memory model
according to the selected change;
determining if the command violates the set of rules;
based on a determination that the command violates the
set of rules, logging an error in association with the
selected change and a state of the in-memory model;
determining if a result of simulating the application of the
set of proposed changes includes at least one error
indicative of failure:
if the result of simulating the application of the set of
proposed changes includes at least one error indica-
tive of failure, generating a report indicative of a
prediction of a failure, the report including a context
of the at least one error indicative of failure; and
if the result of simulating the application of the set of
proposed changes does not include at least one error

5

10

20

25

36

indicative of failure, deploying the set of proposed
changes to the database based on a determination
that the application of the set of proposed changes
would be successful.

14. The method of claim 13, further comprising repeating
the selecting, mapping and determining if the command
violates the set of rules for each change in the set of
proposed changes.

15. The method of claim 13, wherein the snapshot of the
database schema comprises a change log.

16. The method of claim 15, further comprising adding
the set of proposed changes to the change log.

17. The method of claim 13, wherein determining if the
command violates the set of rules comprises determining if
the command is to modify the in-memory model in violation
of a set of constraints modeled in the in-memory model of
the database schema.

18. The method of claim 13, further comprising sending
SQL commands from the first computing device to the
database server to update the database schema according to
the set of proposed changes.

19. The method of claim 13, further including using a
graphical user interface to view multiple databases in a radar
view, wherein the multiple databases are plotted in sectors
and at radii based on a state, revision, or step classification.

20. The method of claim 13, wherein the first computing
device comprises a web application server.

21. The method of claim 13, wherein the profile infor-
mation comprises a permissions model and determining if
the command violates the set of rules comprises determining
if an author of the selected change is permitted to make the
selected change based on the permissions model.

#* #* #* #* #*

