United States Patent

US010241992B1

(12) ao) Patent No.: US 10,241,992 B1
Middendorf et al. 45) Date of Patent: Mar. 26,2019
(54) TABLE ITEM INFORMATION EXTRACTION 4,272,756 A 6/1981 Kakumoto et al.
WITH CONTINUOUS MACHINE LEARNING 4,933,979 A 6/1990 Suzuki et al.
THROUGH LOCAL AND GLOBAL MODELS 3,317.646 A 5/1994 Sang, Jr. et al.
5,339,421 A 8/1994 Housel
. . . 5448375 A 9/1995 Cooper et al.
(71) Applicant: Open Text SA ULC, Halifax (CA) 5.594.800 A 1/1997 Kopec ef al.
5,659,791 A 8/1997 Nakaji t al.
(72) Inventors: Mattias Theodor Middendorf, (Continue(i;ma e
Constance (DE); Gisela Barbara
Cacilie Hammann,
Grasbrunn/Miinchen (DE); Carsten FOREIGN PATENT DOCUMENTS
Peust, Constance (DE) DE 10342594 Al 4/2005
WO WO 1998/047098 Al 10/1998
(73) Assignee: Open Text SA ULC, Halifax (CA)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 International Search Report for International Application No. PCT/
U.S.C. 154(b) by 0 days. EP2004/009539, completed Feb. 16, 2005, dated Mar. 31, 2005
) (with English translation), 6 pgs. Patent Cooperation Treaty.
(21) Appl. No.: 15/964,654 (Continued)
(22) Filed: Apr. 27, 2018
Primary Examiner — Andrew T Mclntosh
o4
Gh IGn0tt‘$FCl}7/00 (2006.01) (74) Attorney, Agent, or Firm — Sprinkle IP Law Group
GO6F 17/24 (2006.01)
GO6F 17/30 (2006.01) (57) ABSTRACT
GO6K 9/00 (2006.01) . L. .
GO6N 99/00 (2019.01) A bipartite aPphcatlon 1mp1emen.ts a table auto-completlon
(52) US.Cl (TAC) algorithm on the client side and the server side. A
CPC : GOGF 17/243 (2013.01); GOGF 17/245 client module runs a local model of the TAC algorithm on a
"""" E2.013 01); GO6F 17/24(;} (2613 01); GO6F user device and a server module runs a global model of the
i7/3’0011 (2013.01); G06F 17’/30339 TAC algorithm on a server machine. The local model is
(2013.01); GO6K 9 /004'1 49 ’(2013 01); GO6K continuously adapted through on-the-fly training, with as
9/004&9 (2’013 01); GO6N 99/005 (2(’)13 o1) few as a negative example, to perform TAC on the client
(58) Field of Classificati .S ’ h ’ side, one document at a time. Knowledge thus learned by the
CII(:C of Slasstfication Searc GOGE 17/243 local model is used to improve the global model on the
g lt """ ﬁlf """"""" lt """""" h hist server side. The global model can be utilized to automati-
ce application ftle for compiete search hstory. cally and intelligently extract table information from a large
. number of documents with significantly improved accuracy,
(56) References Cited & ¥ mp Y

U.S. PATENT DOCUMENTS

3,611,291 A
3,925,760 A

10/1971 Frank
12/1975 Mason et al.

- 820

requiring minimal human intervention even on complex
tables.

20 Claims, 14 Drawing Sheets

441294007

US 10,241,992 B1
Page 2

(56)

5,666,549
5,680,223
5,689,620
5,717,794
5,732,260
5,835,712
5,923,792
5,963,966
5,966,473
6,028,970
6,035,282
6,108,674
6,131,102
6,353,840
6,457,004
6,928,449
6,941,521
7,085,437
7,221,796
7,706,611
8,270,721
9,753,908
2002/0141660
2003/0115189
2004/0181749

2004/0243552
2007/0065011

2009/0119574

References Cited

U.S. PATENT DOCUMENTS

> e e > > 0 >

9/1997
10/1997
11/1997

2/1998

3/1998
11/1998

7/1999
10/1999
10/1999

2/2000

3/2000

8/2000
10/2000

3/2002

9/2002

8/2005

9/2005

8/2006

5/2007

4/2010

9/2012

9/2017
10/2002

6/2003

9/2004

12/2004
3/2007

5/2009

Tsuchiya et al.
Cooper et al.
Kopec et al.
Koga et al.
Nomiyama
DuFresne

Shyu et al.
Mitchell et al.
Toshimichi et al.
DiPiazza et al.
Tamai et al.
Murakami et al.
Potter

Saito et al.
Nishioka et al.
Ten-Hove et al.
Lin et al.
Nakajima et al.
Nishiyama et al.
King et al.
Schiehlen

Gitlin
Bellavita et al.
Srinivasa et al.

GO6F 17/2247

Chellapilla GO6F 17/243
715/222

Titemore et al.

Schiehlen GO6K 9/00469
382/181

Gitlincoovovrnenn. GOG6F 17/2247
715/209

2009/0204881 Al* 82009 Murthy GOG6F 17/243
715/226
2017/0046324 Al* 2/2017 Hu ..ccooviieinn GOG6F 17/243

2018/0032496 Al* 2/2018 Panda GOG6F 17/243

OTHER PUBLICATIONS

Casey R.G. et al., Intelligent Forms Processing, IBM Systems
Journal, IBM Corp., Armonk, NY, US, vol. 29, No. 3, Jan. 1990,
(ISSN 0018-8670), pp. 435-450.

Baeza-Yates and Ribeiro-Neto, Modern Information Retrieval, Addison-
Wesley Press, Reading, MA, (ISBN 0-201-39829-X), pp. 192-199
and 216-219.

Written Opinion for International Application No. PCT/EP2004/
009539, completed Feb. 16, 2005, dated Mar. 31, 2005, Patent
Cooperation Treaty, 8 pgs.

International Preliminary Report on Patentability (Chapter II) for
International Application No. PCT/EP2004/009539, completed Oct.
2, 2006 (with English translation), Patent Cooperation Treaty, 32
pgs.

Office Action for U.S. Appl. No. 10/573,429, dated Dec. 31, 2008,
17 pgs.

Office Action for U.S. Appl. No. 12/495,755, dated Oct. 1, 2010, 11
pgs.

Office Action for U.S. Appl. No. 12/495,755, dated Feb. 25, 2011,
11 pgs.

Classifying and Extracting Data from Documents: OCR, ICR, and
IDR, OpenText Capture Center Product Overview, Aug. 2012, 5

pages.

* cited by examiner

US 10,241,992 B1

Sheet 1 of 14

Mar. 26,2019

U.S. Patent

A
ggL”

044

L Ol

Viva G310vdiXd
HLIM ISvaYivd
3L iNdOd

gt -

{(NOILTTdOD
L0V F78YL “9'T)
VYO LOVELE

06t

s

SLINZANO0A
AHISEVIOD

i

e
4

SAOHNOS
ALVHYLSIC
WOH4 SINIWN00T
LO3TI03

%2

J
HFINIO FHNLAVO

dHVMLH0E
Wy

AHYMLA0S
NYOS

NOLLY D TddY
ASIMdHI NG

A

géi

US 10,241,992 B1

Sheet 2 of 14

Mar. 26,2019

U.S. Patent

ASYEVLYQ 3LV INdOd

NV SINZNNSOAJ
ONIACONI NO NOLLOVHELXE
A1EV1 OLNY WHOA3d

1174

SLNINNI0T
J355300Nd
WOY4 NV

300N
ININNOOA

THOON 3N

13A0n 1130

{vaos)
THO0N 318V L
voz / ,

{(d3A%38)
NOLLITINOD-DLOY 31aYL

ez /

¢ Old

AdAlL
INFWN00G
NO
FDATMONA
O3NYIT

T3A0NW
INFWND0A

130N AN

T300W TE0

(o0
THOOW 318vYL
707/
(INFD)
NOUTHWOO-0LNY 318YL

2z

00

/

-

A8vEY LV 2V N40d
ONY 3137dN00-0LNY
1YL WHO4dHd

NOILOTHEOD Y2
HISN A3 WOYS
AT IHLNO NHY3T

US 10,241,992 B1

Sheet 3 of 14

Mar. 26,2019

U.S. Patent

v 94

0oy

FINAOW
HIAIS 0L TFCONW TWDCT J34VadN ON3S

Ny

$

FFTHNOD NOILOVRLX3 AV

S

FTdWYXT INLYDIN SV 1300W TYO0T N
NOLLOVHLXZ LO3HH0O0N NG NOULYINHO AN
FHOLE ONY T3C0W TWO0T L03-E00

s34 1+ \gip

_¢NOLLOFHNOQ

SO FSVEYIVA 2LV TNH0d ONY
SINIOH Y1VQ LOVHIXE ATIWOLLVACLNY

™ gop

H

THA0W TWOOT NI STTdNVXE
FALLISOd ONIST SINIOC ViVD ININYE 130

\ jop

€ Oid 008
2

™

ST TIWYXE ZALLISOJ SV T300W TWOOT NI SINIOd

07¢ Y1iv(d A310VH X3 NO NOILVAROAN! 36045
!
) STl 35vEVLYa
aig 7/ LY IN0d ONY SINIOd Y1VQ 10VHIX3
i
F1dvL 40 NOILHOd
0ie /1 O3LHONHOIH WO SINIOG YAva 3NINYELA0
4
§ SOV INSWND0A
goe /1 NO QILHONHSIH 3718Y1 40 NOILYOd 3ZATYNY
!
| 3TaVL ONINIVINOD JOVAL
g /1 INSWND0A ONY 3718YL 3SVavIva AYT4SIa

US 10,241,992 B1

Sheet 4 of 14

Mar. 26,2019

U.S. Patent

vS DI

008

SRS D Y

AL D

60000000000

US 10,241,992 B1

Sheet 5 of 14

Mar. 26,2019

U.S. Patent

g5 'Ol

%Y

e 3
RRES R

RS

US 10,241,992 B1

Sheet 6 of 14

Mar. 26,2019

U.S. Patent

29

oid

TR SIS

AN
Ok g

X3

IS

ARG

Laefistonging

SRS

IREIHE

US 10,241,992 B1

Sheet 7 of 14

Mar. 26,2019

U.S. Patent

as "old

i

s AR el

i

P

oo b Sassrg lvansay
ISP - AT SRS

< ageng g,

US 10,241,992 B1

Sheet 8 of 14

Mar. 26,2019

U.S. Patent

¥8¢

3% Ol

0eg

o
ks
NS SR

Baenr ui

SRR

g

US 10,241,992 B1

Sheet 9 of 14

Mar. 26,2019

U.S. Patent

48 "OId

ol
(Y

k=

By

e,

TR

CRONAR L

BB HGHHATD
v

2

AR,

US 10,241,992 B1

Sheet 10 of 14

Mar. 26,2019

U.S. Patent

¥9 Ol

003

ARSI S
gy A

T
SR

SRR W Y R RN Y Y AN g
A A g i AR ANEY
s RN ey Ry HEESIN R
L Ias s SRR e

epg e
...MN\.VN:.R

Sl

SERTRNRYY R

US 10,241,992 B1

Sheet 11 of 14

Mar. 26,2019

U.S. Patent

g9 'Ol

Swiiatieg

s

srsis

RN WA g

P Sy 2 XA
RIS redineiyduay

L s

US 10,241,992 B1

Sheet 12 of 14

Mar. 26,2019

U.S. Patent

Vi 'S

US 10,241,992 B1

Sheet 13 of 14

Mar. 26,2019

8. °9id

U.S. Patent

i S R S

US 10,241,992 B1

Sheet 14 of 14

Mar. 26,2019

U.S. Patent

818
38vaviva

8 Ol

898 O/

798 WY
298 Wou
098 Ndo

918
H3LNANOD
HIAEIAS

¥ig

008

828 o

HAQMIIN

HILNAWOS
ASdUIING

528 OH
¥28 vy
728 WOy
026 NdD

4%
HILNAWOD 38N

US 10,241,992 Bl

1
TABLE ITEM INFORMATION EXTRACTION
WITH CONTINUOUS MACHINE LEARNING
THROUGH LOCAL AND GLOBAL MODELS

TECHNICAL FIELD

This disclosure relates generally to image analysis and
feature extraction. More particularly, this disclosure relates
to table item information extraction systems and methods
with continuous machine learning through local and global
models, useful for automatically, efficiently, and accurately
acquiring table data from massive amounts of documents in
an enterprise computing environment with minimal human
intervention.

BACKGROUND OF THE RELATED ART

Image analysis and feature extraction technologies have
come a long way. U.S. Pat. No. 8,270,721 describes a variety
of methods and systems for acquiring data from machine-
readable documents and provides a new solution for acquir-
ing table data from machine-readable documents. In U.S.
Pat. No. 8,270,721, individual data are extracted from a
document, as automatically as possible, and are entered into
corresponding database fields. When data cannot be
extracted from the document with a desired degree of
reliability for particular database fields, the document is
displayed with the database fields for which the data cannot
be extracted. A proposal routine is executed so that string
sections, in a vicinity of a pointer movable by a user on the
display screen, are selected, marked, and proposed for
extraction. In this way, the user is informed of the database
field for which the data must still be extracted from the
document shown on the display screen and can then transfer
or incorporate the proposed string section into the database
field merely by actuating a particular key. Through the
automatic selecting and marking of the string section, the
process of incorporating the still-missing data is signifi-
cantly simplified and accelerated.

SUMMARY OF THE DISCLOSURE

An object of the invention is to provide innovations and
improvements to image analysis and feature extraction tech-
nologies in enterprise computing environments. Another
object of the invention is to learn, on-the-fly, from initial
minimal user feedback (e.g., a line or two extracted from a
table and corrected by a user) and be able to leverage the
learned knowledge to automatically complete the rest of the
table extraction, while continuously self-adapting to
improve performance. Yet another object of the invention is
to combine local learning (on the user side) and global
learning (on the server side) and be able to leverage the
combined knowledge to automatically, or substantially auto-
matically, extract table item information from massive
amounts of documents.

To realize these and other objects, the invention provides
table item information extraction systems and methods with
continuous machine learning through local and global mod-
els. In some embodiments, a method of the invention may
include displaying a database table and an image on a user
device through a user interface of a bipartite application. The
database table may have a plurality of columns. The number
of columns can be customized using the user interface. The
image can be a scanned image of a document containing a
table. The table may contain coded text generated by an

10

15

20

25

30

35

40

45

50

55

60

65

2

optical character recognition (OCR) function in a manner
known to those skilled in the art.

The bipartite application has two parts—a client module
implemented on the user device and a server module imple-
mented on a server machine operating in a backend of an
enterprise computing environment. The client module
includes a local model of a table auto-completion algorithm
and the server module includes a global model of the table
auto-completion algorithm. The user interface includes a
user interface element associated with the table auto-
completion algorithm.

Responsive to a user selecting the user interface element
displayed on the user device, the client module running the
local model of the table auto-completion algorithm is oper-
able to analyze a portion of the table highlighted by the user
on the user interface, the portion of the table highlighted by
the user on the user interface defining initial coordinates on
the user interface; determine a data point for each column of
the database table using the initial coordinates; automati-
cally extract data points thus determined from the table;
enter the data points automatically extracted from the table
into the plurality of columns of the database table; and store
information about the data points in the local model as
positive examples.

The method may further include determining, by the
client module running the local model of the table auto-
completion algorithm utilizing the positive examples in the
local model, a plurality of additional data points in the table;
automatically extracting the plurality of additional data
points from the table; and entering the plurality of additional
data points extracted from the table into the plurality of
columns of the database table. In some embodiments, the
local model includes a plurality of models, including a cell
model defining properties of cells of a given column, a line
model defining a number of cells per line and transition
there-between, and a document model defining line dis-
tances and a number of lines per document. In some embodi-
ments, the global model of the table auto-completion algo-
rithm is similarly defined. In some embodiments, the
plurality of additional data points is automatically extracted
from the table utilizing the cell model, the line model, and
the document model. In some embodiments, these models
encompass elements that describe a layout of a document of
a certain document type, including an orientation of the
document.

Once entered, the user can view the plurality of additional
data points automatically extracted from the table through
the plurality of columns of the database table displayed on
the user interface on the user device. The plurality of
columns of the database table displayed on the user interface
on the user device is manually editable. Thus, if an auto-
matically extracted and entered data point in the plurality of
columns of the database table displayed on the user interface
on the user device is incorrect, the user can provide a
correction through the user interface.

Accordingly, the method may further include receiving a
correction to a data point of the plurality of additional data
points automatically extracted from the table; and correcting
the local model to learn from the correction to the data point
and include the data point in the local model as a negative
example. For instance, perhaps the number of cells per line
and/or transition there-between was incorrect, or perhaps a
line distance was incorrect. The correction from the user is
used by the client module to fine-tune the local model where
applicable and the incorrect information is kept by the local
model as a negative example.

US 10,241,992 Bl

3

At this time, the local model has some positive examples
from the initial user input (e.g., the initial coordinates
determined from a portion of the table highlighted by the
user on the user interface) and one negative example (e.g.,
the number of cells per line is not 4). For some tables, this
kind of on-the-fly training with a few positive and negative
examples is all the local model needs to complete the rest of
the table extraction automatically (referred to as table auto-
completion or TAC). The amount of on-the-fly training of
the local model (by positive and negative examples) can
vary depending upon the complexity of a table. As an
example, a complex table can have a plurality of items, each
item containing multiple lines or rows. Due to the semi-
structured nature of such a table, the number of lines may
vary throughout the table, making it extremely difficult for
a machine to read out table data correctly. Further compli-
cating the matter is that sometimes only one or two pieces
of information (features) from each item would be needed
for extraction. Accordingly, the more complex a table, the
more training of the local model may be needed in order for
the local model to perform TAC accurately.

Because the local model can learn from each mistake (as
a negative example), the performance of the local model
(e.g., TAC accuracy) can be improved with each correction.
That is, the client module can continuously adapt the local
model to learn, on-the-fly, by positive and negative
examples and automatically continuously extract table infor-
mation from the table utilizing the positive and negative
examples until extraction of the table information from the
table is automatically completed. The learned knowledge
gained by the local model from the on-the-fly training with
respect to a certain document type (which has a particular
layout associated therewith) can be leveraged to improve the
overall performance of the table auto-completion algorithm.

For example, in some embodiments, the local model thus
trained can be communicated to the backend and used by the
server module to update the global model of the table
auto-completion algorithm. Generally, the global model is
trained on previously processed documents. The learned
knowledge gained by the local model from the on-the-fly
training with respect to a certain document type (which has
a particular layout associated therewith) can further improve
the global model and increase the performance of the global
model in TAC accuracy (without needing a human to train
the global model by positive and negative examples.

In this way, the server module executing on the server
machine can leverage the learned knowledge from the local
model in performing table extraction with respect to a
particular document type to improve the global model
accordingly and utilize the improved global model to per-
form automatic extraction of table information from a mass
amount (e.g., hundreds, thousands, and tens of thousands,
etc.) of documents of the same document type and auto-
matically enter the table information thus extracted from the
documents into database fields.

One embodiment comprises a system comprising at least
one processor and at least one non-transitory computer-
readable storage medium that stores computer instructions
translatable by the processor to perform a method substan-
tially as described herein. Another embodiment comprises a
computer program product having at least one non-transitory
computer-readable storage medium that stores computer
instructions translatable by at least one processor to perform
a method substantially as described herein. Numerous other
embodiments are also possible.

These, and other, aspects of the disclosure will be better
appreciated and understood when considered in conjunction

25

40

45

55

65

4

with the following description and the accompanying draw-
ings. It should be understood, however, that the following
description, while indicating various embodiments of the
disclosure and numerous specific details thereof, is given by
way of illustration and not of limitation. Many substitutions,
modifications, additions and/or rearrangements may be
made within the scope of the disclosure without departing
from the spirit thereof, and the disclosure includes all such
substitutions, modifications, additions and/or rearrange-
ments.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings accompanying and forming part of this
specification are included to depict certain aspects of the
invention. A clearer impression of the invention, and of the
components and operation of systems provided with the
invention, will become more readily apparent by referring to
the exemplary, and therefore non-limiting, embodiments
illustrated in the drawings, wherein identical reference
numerals designate the same components. The features
illustrated in the drawings are not necessarily drawn to scale.

FIG. 1 depicts a diagrammatic representation of a network
computing environment where embodiments disclosed
herein can be implemented.

FIG. 2 depicts a diagrammatic representation of a bipartite
application implementing a table auto-completion algorithm
on the client side and the server side according to some
embodiments.

FIG. 3 is a flow chart illustrating an example of a method
for training a local model with positive examples according
to some embodiments.

FIG. 4 is a flow chart illustrating an example of a method
for training a local model with a negative example according
to some embodiments.

FIGS. 5A-5F depict diagrammatic representations of a
user interface of a bipartite application implementing a table
auto-completion algorithm, illustrating an example of on-
the-fly training of a local model of the table auto-completion
algorithm according to some embodiments.

FIGS. 6A-6B depict diagrammatic representations of a
user interface of a bipartite application implementing a table
auto-completion algorithm, illustrating an example of auto-
matic extraction of table item information by the table
auto-completion algorithm utilizing a trained local model
according to some embodiments.

FIGS. 7A-7B depict diagrammatic representations of a
user interface of a bipartite application, illustrating an
example of setting up capture parameters used by the
bipartite application according to some embodiments.

FIG. 8 depicts a diagrammatic representation of an
example of an enterprise computing environment where
embodiments disclosed can be implemented.

DETAILED DESCRIPTION

The invention and the various features and advantageous
details thereof are explained more fully with reference to the
non-limiting embodiments that are illustrated in the accom-
panying drawings and detailed in the following description.
Descriptions of well-known starting materials, processing
techniques, components, and equipment are omitted so as
not to unnecessarily obscure the invention in detail. It should
be understood, however, that the detailed description and the
specific examples, while indicating some embodiments of
the invention, are given by way of illustration only and not
by way of limitation. Various substitutions, modifications,

US 10,241,992 Bl

5

additions, and/or rearrangements within the spirit and/or
scope of the underlying inventive concept will become
apparent to those skilled in the art from this disclosure.

As described above, image analysis and feature extraction
technologies have come a long way. However, as noted in
U.S. Pat. No. 8,270,721, with prior methods and systems, it
is not always possible automatically fill all database fields of
a database reliably with data extracted from documents.
There could be many causes for the difficulty in implement-
ing automated data extraction with high accuracy and com-
pleteness. For example, as illustrated in FIG. 1, documents
101 may be received from disparate sources 110. Documents
101 themselves may be of a heterogeneous nature, with
different formats, layouts, types, and/or contents. Further, a
variety of applications 120 running on disparate sources 110
may handle documents 101 differently and have different
requirements on what kind of documents and/or network
communications protocols they support (e.g., via emails,
web applications, application programming interface calls,
etc.). Sometimes documents 101 can be so different and
unlike one another that they cannot be compared by data
extraction machines automatically.

Embodiments disclosed herein can improve image analy-
sis and feature extraction so that automated data extraction
can be performed on massive amounts of documents in
enterprise computing environments with high accuracy and
completeness. FIG. 1 depicts a diagrammatic representation
of a network computing environment 100 where embodi-
ments disclosed herein can be implemented.

As illustrated in FIG. 1, heterogeneous documents 101
may be received, through applications 120 running on
disparate sources 110, by a document recognition and data
processing platform referred to as capture center 170. Open-
Text™ Capture Center, available from Open Text, headquar-
tered in Canada, is an example of a computing platform that
can implement capture center 170.

Capture center 170 may include a plurality of subsystems
(e.g., subsystems 130, 140, 150, 160) configured for pro-
viding advanced document and character recognition capa-
bilities for processing documents 101 into machine-readable
information that can be stored in a data store 145 and used
by any subsequent computing facility, represented by an
enterprise server 180 in FIG. 1. Non-limiting examples of
subsequent computing facilities can include, but are not
limited to, content servers, archive servers, case manage-
ment systems, customer relation management systems,
record management systems, invoice management systems,
etc.

Generally, subsystem 130 is configured for collecting or
receiving documents 101 from disparate sources 110 (e.g.,
through software applications 120). Documents 101 can
include invoices, purchase orders, debit notes, credit notes,
delivery notes, and so on. Where applicable (e.g., when
documents received are actually scanned images), subsys-
tem 130 can separate or split a batch of images into
individual (e.g., multi-page) documents. When documents
101 do not already contain coded text, subsystem 130 can
run an OCR function to transform pixels into characters
(coded text).

Subsystem 140 is configured for classifying these docu-
ments. The classification may entail examining a document
and determining a document type (e.g., .invoice, .delivery
note, .order, .other, etc.) for the document. Each document
type may be characterized by a set of features (e.g., a number
of lines per document, line distances, a number of cells per
line, transition between cells on the same line, properties

10

15

20

25

30

35

40

45

50

55

60

65

6

(e.g., size, content, alignment, etc., each with typical average
and variance) of cells in a column, and so on.

Subsystem 150 is configured for extracting data from the
documents thus classified. The data exaction, which may be
performed depending upon the document type, may entail
searching for certain features in a document that correspond
to the document type. For example, if a document is clas-
sified as an invoice type and the invoice type is associated
with a set of features such as date, amount, order number,
and supplier, subsystem 150 may operate to search the
document for date, amount, order number, and supplier and
extract these features from the document.

Subsystem 160 is configured to interpret the extracted
features and store the results (e.g., extracted data with
enhanced contextual information) in data store 145 which, in
some embodiments, can contain a database accessible by
enterprise server 180. The interpretation by subsystem 160
can include data manipulation and transformation. As a
non-limiting example, suppose the date feature extracted
from the document is textual information in the form of
“Month Day, Year” (e.g., “Apr. 20, 2018). Subsystem 160
can transform this textual information into a numerical form
(e.g., “04202018”). As another example, suppose the sup-
plier feature extracted from the document is textual infor-
mation bearing the actual name of a supplier. Subsystem 160
can search a supplier database, find a supplier identifier
associated with that name, and store the supplier identifier in
data store 145 as part of the extracted data.

In some embodiments, subsystem 150 includes a new
table auto-completion capability. In some embodiments, the
new table auto-completion capability can be implemented as
a function accessible by a user through a user interface 112
of an enterprise application 120 that functions as client
software of capture center 170. As discussed below, the new
table auto-completion capability implements adaptive
(learning) technology so that subsystem 150 can continu-
ously self-adapt to improve performance (e.g., data extrac-
tion accuracy, completeness, speed, etc.).

In some embodiments, the new table auto-completion
capability is realized in a table auto-completion algorithm
implemented in a bipartite application that has two parts, one
on the client side and one on the server side. As illustrated
in FIG. 2, bipartite application 200 may include a client
module 252 on the client side and a server module 254 on
the server side. Through bipartite application 200, the table
auto-completion algorithm is operable to collect all the
information (local or global) in a table model which
becomes more and more precise with each piece of incom-
ing information. The table model is also bipartite, with a
local model for the client side and a global model for the
server side. The table model is constructed per document
type. Since subsystem 150 is configured for performing data
extraction on multiple document types, there can be multiple
table models corresponding to the multiple document types.

In some embodiments, client module 252 runs a local
model 262 of the table model on a user device 210. When the
local model first encounters a document having a particular
document type, it may have a basic or default hypothesis
about the document. As discussed above, a document type
can be characterized by a set of features. To model the set of
features, the local model includes a cell model, a line model,
and a document model. The cell model may define various
properties of cells of a given column (e.g., size, content,
alignment, and so on, each with typical average and vari-
ance). The line model may define a number of cells per line
and transition (vector) between the cells of a given line. The
document model may define typical line distances and a

US 10,241,992 Bl

7

number of lines per document. Skilled artisans appreciate
that the cell, line, and document models may vary from
document type to document type, as well as from imple-
mentation to implementation, depending on the needs of
individual use cases. The default or initial values of features
described by the cell, line, and document models represent
the local model’s basic or default hypothesis about a docu-
ment type.

This hypothesis can be continuously adapted through
learning, on-the-fly, from minimal user feedback (e.g., a line
or two extracted from a table and corrected by a user) while
the local model is utilized by the client module to perform
table extraction on the document. For example, the basic
hypothesis may be four lines and four column for each item.
A user correction may cause the hypothesis to change the
number of lines to seven. The client module (which runs on
a machine such as the user device) is given knowledge of
what to look for (e.g., a reference number, a part number, an
amount, etc., through a previously defined scenario). Lever-
aging the knowledge learned from the user feedback, the
client module is operable to update the local model, extract
data from the table utilizing the local model, and automati-
cally fill all database fields of a database with data extracted
from the table.

Previously, while manual correction is possible, the
knowledge that could be gained from that correction on the
client side would be lost on data extraction servers running
on the server side. In this case, however, that knowledge is
retained first in the local model and later in the global model.
As the local model is updated, the hypothesis evolves. When
table extraction on the document is completed, the client
module may communicate the local model updated thus far
on the client side to the server module which can then use
the knowledge contained in the updated local model to
update or otherwise improve the global model on the server
side.

As illustrated in FIG. 2, local model 262 and global model
264 can be similarly defined, each having a cell model, a line
model, and a document model. While not shown in FIG. 2,
in some embodiments, global models on the server side
could have a hierarchical structure, with a global root model
for each enterprise application (e.g., knowledge of typical
columns required by that enterprise application) and specific
sub-models (e.g., a cell model, a line model, a document
model, etc.) for each of a plurality of layouts supported by
the corresponding enterprise application. That is, a layout
(also referred to as a layout template) in the global model
may be structured into a hierarchy like a tree.

These global models are trained (using previously pro-
cessed documents) and utilized by server module 254 for
extracting data of interest (e.g., table item information) from
a huge number of documents, often in the hundreds, thou-
sands, or more. Outputs (extracted data) from server module
254 can be stored in a data store 245 (which can be an
embodiment of data store 145 described above) or inter-
preted (e.g., by subsystem 160 described above) and then
stored in data store 245.

As skilled artisans can appreciate, enterprise documents
such as invoices, delivery notes, remittances, etc. typically
contain large and/or complex tables. Such a document can
contain many different items of interest (features for extrac-
tion). However, even though a document may contain what
looks like a table to human eyes, it is not a table structure
that can be read by machines. From a logical perspective,
this document (or an image thereof) can be treated like a
table extraction so that a machine can view the document as

5

10

15

20

25

30

35

40

45

50

55

60

65

8

a table and perform an item extraction using the table
auto-completion algorithm with continuous and self-adap-
tive machine learning.

Skilled artisans appreciate that there are many types of
machine learning. In this disclosure, a machine can learn,
on-the-fly, from positive and negative examples. This is
referred to as active learning or adaptive learning, which is
part of semi-supervised machine learning in which a learn-
ing algorithm is able to interactive with a user to obtain
desired outputs at new data points. In this case, the table
auto-completion algorithm is able to interactively obtain a
user’s correction to an automatically extracted data point
and store the incorrect data point in the local model as a
negative example.

The training of the machine (which runs the client module
including the local model) to recognize a new table layout
(of a detected document type or a new document type having
a new table layout) can begin, from scratch, with some
positive examples provided by a user. FIG. 3 is a flow chart
illustrating an example of a method 300 for training a local
model with positive examples. In some embodiments,
method 300 may comprise displaying a database table and
an image on a user device through a user interface of a
bipartite application (e.g., bipartite application 200) (301).
An example of the user interface is shown in FIG. SA.

FIG. 5A depicts a diagrammatic representation of a user
interface 500 of an application 520 (which can represent a
client module of a bipartite application described above)
implementing a table auto-completion algorithm (which can
be activated or invoked through a user interface element
550, referred to herein as TAC 550), showing an example of
a database table 510 and an example of a document image
530. Database table 510 may have a plurality of columns
(e.g., columns 522, 524) having a plurality of database fields
(e.g., database fields 526, 528). The number of columns can
be customized using a layout configuration function 525 of
user interface 500. The number of database fields can
depend on the number of lines in document image 530.
Document image 530 can be a scanned image of a document
containing a table 535. As discussed above, this table does
not have a table structure that can be read by machines.
Rather, table 535 may contain coded text generated by an
optical character recognition (OCR) function in a manner
known to those skilled in the art.

As illustrated in FIG. 5B, a user can highlight a portion
560 of table 535 on the user interface to define the initial
coordinates. The user may select TAC 550, which activates
the table auto-completion algorithm. Responsively, the cli-
ent module running the local model of the table auto-
completion algorithm is operable to analyze portion 560 of
table 535 highlighted by the user on user interface 500 (305)
and determine, based on the initial coordinates defined by
the user, that data points 562, 564 should be extracted (310).
The client module is further operable to extract data points
562, 564 from table 535 and enter data points 562, 564 into
database fields 526, 528 (315), as shown in FIG. 5B.

Since the initial coordinates are user-defined, data points
determined using these initial coordinates can provide posi-
tive information from which a machine (referring to the
machine that runs the client module including the local
model) can learn. From the perspective of a machine imple-
menting the table auto-completion algorithm, a table struc-
ture contains data that are structured in two dimensions (e.g.,
columns and rows), with each column sharing objects or
items of the same or similar type (e.g., date, amount,
supplier, etc.). Thus, in this case, the machine can learn what
columns are (e.g., columns 522, 524), what they contain

US 10,241,992 Bl

9
(e.g., data points 562, 564 in database fields 526, 528), what
type of values (e.g., numbers, alphanumeric values, sizes,
etc.), the relationships among the extracted data points, and
so on. The pieces of information thus learned can be stored
in the local model as positive examples (320).

After the initial extraction (based on the initial coordi-
nates defined by the user), the user can run TAC 550 again.
Each time TAC 550 is run, it applies the local model. At this
time, the local model has been updated with the positive
examples (e.g., from a single portion which, in one embodi-
ment, can have only a single line). However, the local model
has not yet seen a negative example.

FIG. 4 is a flow chart illustrating an example of a method
400 for training a local model with a negative example when
TAC 550 is run. In some embodiments, referring to FIGS. 4
and 5B, method 400 may comprise determining what data
points are to be extracted from table 535 (401). This
determination may be performed by the table auto-comple-
tion algorithm utilizing the local model which has been
updated with the positive examples (including the cell
model, the line model, and the document model that hypoth-
esize, based on a given scenario, what the data points are and
what their positions and relationships are in the table). The
determined data points are automatically extracted from
table 535 and entered into corresponding database fields
(405), as shown in FIG. 5C. With the initial capture (e.g.,
from a single line or a few lines in a single portion),
automatic capture of the entire table 535 may not yet be
completely correct.

Through user interface 500 (which can include a valida-
tion screen, as shown in FIG. 5C), the user can view both
database table 510 and table 535 and verify data points
automatically extracted by the table auto-completion algo-
rithm. In this case, portion 560 of table 535, which is
highlighted by the user, has five lines and, using portion 560
as an example, the local model hypothesized that the next
portion (e.g., portion 570 of table 535) from where next data
points can be extracted (e.g., for columns 522, 524) also has
five lines. However, as illustrated in FIG. 5D, the user can
see that this hypothesis is incorrect and that portion 570
should have four lines instead. This error means that, while
data point 572 was correctly automatically extracted and
automatically entered into database field 536 of column 522,
data point 574 was incorrectly extracted and entered into
database field 538 of column 524.

As shown in FIG. 5E, the user can select database field
538 of column 524 and provide the correct value (data point
574c¢) in database field 538. In some cases, this single
correction may be enough for the table auto-completion
algorithm to correct itself (through the local model) and
complete data extraction from table 535. The number of
corrections may depend on the complexity of the table.
Referring to FIG. 4, method 400 may further including
receiving the correction (410) and correct the local model
with the user-provided correction. As described above, the
machine implementing the table auto-completion algorithm
can learn from each interaction with the user (e.g., a cor-
rection in a second line or second portion) and improve
itself. For example, if the user deletes a suggested line, the
machine implementing the table auto-completion algorithm
can learn on the fly that this type of data is undesired and
delete all the subsequent lines of the same type of data. This
minimizes the number of table lines in need of manual
capture (i.e., the logical minimum needed to grasp the user’s
intensions). The local model, therefore, can be a very useful
tool to aid manual capture.

10

15

20

25

30

35

40

45

50

55

60

65

10

In this case, the machine learns a negative example and
stores this knowledge in the local model. As illustrated in
FIG. 4, method 400 may loop back so the machine can, using
the knowledge thus learned, automatically recalculate data
points that should be extracted (401) and automatically
updates, on the fly, the database fields where necessary
(405). That is, outcome from the automatic table data
extraction can already be improved after only one manual
correction. Further, in some cases, manual capture can be
reduced to a single manual correction.

In the example of FIG. 5E, table 535 is quite complex (for
instance, with varying numbers of lines and inconsistent line
distances). The user can see that data point 584 in portion
580 of table 535 was also incorrectly extracted and entered
into database field 548 of column 524. As before, the user
can select database field 548 of column 524 and provide the
correct value (data point 584c¢) in database field 548, as
shown in FIG. 5F.

As illustrated in FIG. 4, each time a correction is made,
the machine implementing the table auto-completion algo-
rithm (which includes method 400) can learn from that
correction, automatically correct its local model, recalculate
data points in table 535, extract them from table 535, and
correspondingly update database table 510 with the recal-
culated data points thus extracted from table 535. The user
can scroll down and verify whether the updated database
table 510 still contains any error.

This process can repeat until there are no more corrections
and the end of table 535 is reached (420). FIG. 5F shows the
last error close to the end of table 535 being corrected in
database field 558 of column 524 for data points 595, 594 of
portion 590 of table 535.

The local model and global model discussed above (e.g.,
local model 262 and global model 264) represent two
different types of input for this continuous and self-adaptive
machine learning. As described above, the machine can
learn from interaction with users (through local models,
referred to as local learning), as well as from previously
processed documents (through global models, referred to as
global learning). Each global model can be trained and
tested on a server machine using documents (of a certain
type and layout) that have been processed on the server side.
Knowledge gained from either the client slide or the server
can be used to improve both the local models as well as the
global models.

For example, referring to FIG. 4, when the table extrac-
tion is completed, the client module may send the updated
local model to the server module (which, in one embodi-
ment, runs on subsystem 150). The server module may
update the global model (for the same document type)
utilizing the local model. The global model thus updated can
then be utilized by the table auto-completion algorithm in a
backend document processing process to automatically
determine data points from multiple documents, automati-
cally extract the data points thus determined, and populate a
database with the data point thus extracted. In this way, the
server module executing on the server machine can leverage
the learned knowledge from the local model in performing
table extraction with respect to a particular document type
and layout to improve the global model accordingly and
utilize the improved global model to perform automatic
extraction of table information from a mass amount (e.g.,
hundreds, thousands, and tens of thousands, etc.) of docu-
ments of the same document type and layout and automati-
cally enter the table information thus extracted from the
documents into database fields. The knowledge gained on

US 10,241,992 Bl

11

the client side through the local model can contribute to
speeding up the automation of data extraction by the server
model on the server side.

Likewise, in some embodiments, a local model can lever-
age the settings of a global model to construct an initial
hypothesis and refine the hypothesis through user interac-
tion. Once trained, a local model (and a global model) can
automatically and accurately extract table item information
without human intervention, an example of which is shown
in FIGS. 6A-6B.

FIG. 6A depicts a diagrammatic representation of a user
interface 600 of an application 620. Similar to application
520 discussed above, application 620 may implement a
client module of a table auto-completion algorithm. In the
example of FIG. 6A, data points have already been auto-
matically extracted from table 635 of document image 630
and entered into database fields of columns 622, 624 of
database table 610. As shown in FIG. 6B, a user can view
table 635 and verify results of the automatic table extraction.
In this example, after the local model is trained once on a
document of the same type, the table auto-completion algo-
rithm is able to completely, automatically, and correctly
extract all the data points from another document of the
same type and no correction is necessary.

Skilled artisans appreciate that the interfaces shown in
FIGS. 5A-6B are exemplary for the purpose of illustration
and not of limitation and that a user interface of a bipartite
application disclosed herein can be configured in many
ways, for instance, through settings shown in FIGS. 7A-7B.
In the example of FIGS. 7A-7B, application 720 (which can
be similar to applications 520, 620 described above)
includes a settings function 700. In some embodiments, a
user can use settings function 700 to configure capture
parameters that will be used in the table extraction. For
example, the user can configure how many columns of data
are to be captured from a document, what each column is to
be called, what type of data each column is to capture, etc.
In this example, the user only wants to capture two columns
(elements 722, 724) and named them “Reference” and
“Table.” These names can be given by the user to the table
auto-completion algorithm as a scenario (which, in one
embodiment, represents a custom project). In practice, most
documents come with defined scenarios known to the algo-
rithm beforehand (however, the number of layouts is almost
infinite, which contributes to the difficulty of automated
table extraction). Users can use the user interface to cus-
tomize document types and scenarios. Once the user-con-
figured settings are applied (through button 722 shown in
FIG. 7B), application 720 is operable to render a database
table with the user-configured settings and display it to the
user (e.g., as columns 522, 524 shown in FIGS. 5A-5F or
columns 622, 624 shown in FIGS. 6A-6B).

Embodiments disclosed here can be particularly useful for
large, complex tables (e.g., have high complexity, high
variants, different from previously seen tables). There are
three aspects of complexity that must be considered: the
characters of the variants within a table from one line to
another line; the variants from one document to the next
document of the same template (e.g., if the invoices from the
same business partner, same vendor, from document to
document, different items, different number of items, differ-
ent number of pages) for one document template; and the
variants from one document template to another template
and the number of document templates. For instance, if an
invoice application has invoices from 10,000 vendors across
all industries across all countries, there’s another type of

10

25

30

35

40

45

12

variants between the layouts (layout templates) as compared
to a company that only has 600 vendors in one industry.

Variants in these dimensions are relevant in calculating
how many training would be needed, how complex is the
task that the system (e.g., subsystem 150) should solve
ultimately. In a straightforward case, a few layout templates
with low variants from document to document, it can take
only a few minutes to train on a few documents and the
system can perform automatic capture on documents based
on the training. On the other end of the spectrum can be a
huge number of documents with very high variants from
document to document.

Complex tables with high variants are difficult for auto-
mated table extraction because even the best, currently
existing extraction algorithms lack the ability to learn from
the ever changing world and thus still require manual
corrections. Further, complex tables tend to be voluminous
and long (e.g., 10 pages, 50 pages, 100 pages) which makes
it very hard to capture manually. Thus, even in manual
corrections, automatic support is highly desirable.

To greatly enhance the speed and quality of manual data
capture of complex tables and increase the rate of com-
pletely extracting complex tables automatically, embodi-
ments disclosed herein combine best of two worlds. The
global model has rich, but potentially imprecise or conflict-
ing information from past experience. The local model has
limited, but more specific and precise information from
manual correction of a document. By combining local and
global models, the imprecise or conflicting information in
the global model can be improved with the more specific and
precise information from the local model. Likewise, the
local model can benefit from the rich information in the
global model and create a better initial hypothesis so that the
length of training may be shortened the next time it encoun-
ters a new document type (or a new layout or type of table
with new kinds of columns that have not been seen by the
table auto-completion algorithm before) and starts from
scratch. The process of learning and training is integrated, on
the fly, no specific training process is needed: a machine
implementing the table auto-completion algorithm learns
while doing the work. The specific knowledge (table rec-
ognition) can be applied to a document more than once,
since the table can appear several times in one document. In
this way, humans would not have to do a lot of manual
reviews and corrections and table extraction can be per-
formed efficiently, adaptively, and fast. If a document has a
lot of pages and thousands of items, the improvements in
table extraction automation provided by embodiments dis-
closed herein can be significant.

FIG. 8 illustrates an exemplary architecture for enterprise
computing environment 800 that includes network 814 that
can be bi-directionally coupled to user computer 812, enter-
prise computer 815, and server computer 816. Server com-
puter 816 can be bi-directionally coupled to database 818.
Network 814 may represent a combination of internal and
external networks that enterprise computing environment
800 may utilize for various types of network communica-
tions known to those skilled in the art.

For the purpose of illustration, a single system is shown
for each of user computer 812, enterprise computer 815, and
server computer 816. However, within each of user com-
puter 812, enterprise computer 815, and server computer
816, a plurality of computers (not shown) may be intercon-
nected to each other over network 814. For example, a
plurality of user computers 812 and a plurality of enterprise
computers 815 may be coupled to network 814. User com-
puters 812 may run a client module of a bipartite application

US 10,241,992 Bl

13

disclosed herein. Server computer 816 may run a capture
center disclosed herein, including a server module of the
bipartite application. Enterprise computers 815 may run a
computing facility that utilizes outputs provided by the
capture center.

User computer 812 can include central processing unit
(“CPU”) 820, read-only memory (“ROM”) 822, random
access memory (“RAM”) 824, hard drive (“HD”) or storage
memory 826, and input/output device(s) (“I/O”) 828. I/O
828 can include a keyboard, monitor, printer, electronic
pointing device (e.g., mouse, trackball, stylus, etc.), or the
like. User computer 812 can include a desktop computer, a
laptop computer, a personal digital assistant, a cellular
phone, or nearly any device capable of communicating over
a network. Enterprise computer 815 may be similar to user
computer 812 and can comprise CPU 850, ROM 852, RAM
854, HD 856, and I/O 858.

Likewise, server computer 816 may include CPU 860,
ROM 862, RAM 864, HD 866, and 1/O 868. Server com-
puter 816 may include one or more backend systems
employed by an enterprise to process information in enter-
prise computing environment 800. Processed information
can be stored in a database management system such as
database 818. Many other alternative configurations are
possible and known to skilled artisans.

Each of the computers in FIG. 8 may have more than one
CPU, ROM, RAM, HD, 1/O, or other hardware components.
For the sake of brevity, each computer is illustrated as
having one of each of the hardware components, even if
more than one is used. Each of computers 812, 815, and 816
is an example of a data processing system. ROM 822, 852,
and 862; RAM 824, 854, and 864; HD 826, 856, and 866;
and database 818 can include media that can be read by CPU
820, 850, or 860. Therefore, these types of memories include
non-transitory computer-readable storage media. These
memories may be internal or external to computers 812, 815,
or 816.

Portions of the methods described herein may be imple-
mented in suitable software code that may reside within
ROM 822, 852, or 862; RAM 824, 854, or 864; or HD 826,
856, or 866. In addition to those types of memories, the
instructions in an embodiment disclosed herein may be
contained on a data storage device with a different computer-
readable storage medium, such as a hard disk. Alternatively,
the instructions may be stored as software code elements on
a data storage array, magnetic tape, floppy diskette, optical
storage device, or other appropriate data processing system
readable medium or storage device.

Those skilled in the relevant art will appreciate that the
invention can be implemented or practiced with other com-
puter system configurations, including without limitation
multi-processor systems, network devices, mini-computers,
mainframe computers, data processors, and the like. The
invention can be embodied in a computer, or a special
purpose computer or data processor that is specifically
programmed, configured, or constructed to perform the
functions described in detail herein. The invention can also
be employed in distributed computing environments, where
tasks or modules are performed by remote processing
devices, which are linked through a communications net-
work such as a local area network (LAN), wide area network
(WAN), and/or the Internet. In a distributed computing
environment, program modules or subroutines may be
located in both local and remote memory storage devices.
These program modules or subroutines may, for example, be
stored or distributed on computer-readable media, including
magnetic and optically readable and removable computer

10

15

20

25

30

35

40

45

50

55

60

65

14

discs, stored as firmware in chips, as well as distributed
electronically over the Internet or over other networks
(including wireless networks). Example chips may include
Electrically Erasable Programmable Read-Only Memory
(EEPROM) chips. Embodiments discussed herein can be
implemented in suitable instructions that may reside on a
non-transitory computer-readable medium, hardware cir-
cuitry or the like, or any combination and that may be
translatable by one or more server machines. Examples of a
non-transitory computer-readable medium are provided
below in this disclosure.

ROM, RAM, and HD are computer memories for storing
computer-executable instructions executable by the CPU or
capable of being compiled or interpreted to be executable by
the CPU. Suitable computer-executable instructions may
reside on a computer-readable medium (e.g., ROM, RAM,
and/or HD), hardware circuitry or the like, or any combi-
nation thereof. Within this disclosure, the term “computer-
readable medium” is not limited to ROM, RAM, and HD
and can include any type of data storage medium that can be
read by a processor. Examples of computer-readable storage
media can include, but are not limited to, volatile and
non-volatile computer memories and storage devices such as
random access memories, read-only memories, hard drives,
data cartridges, direct access storage device arrays, magnetic
tapes, floppy diskettes, flash memory drives, optical data
storage devices, compact-disc read-only memories, and
other appropriate computer memories and data storage
devices. Thus, a computer-readable medium may refer to a
data cartridge, a data backup magnetic tape, a floppy dis-
kette, a flash memory drive, an optical data storage drive, a
CD-ROM, ROM, RAM, HD, or the like.

The processes described herein may be implemented in
suitable computer-executable instructions that may reside on
a computer-readable medium (for example, a disk, CD-
ROM, a memory, etc.). Alternatively, the computer-execut-
able instructions may be stored as software code compo-
nents on a direct access storage device array, magnetic tape,
floppy diskette, optical storage device, or other appropriate
computer-readable medium or storage device.

Any suitable programming language can be used to
implement the routines, methods or programs of embodi-
ments of the invention described herein, including C, C++,
Java, JavaScript, HTML, or any other programming or
scripting code, etc. Other software/hardware/network archi-
tectures may be used. For example, the functions of the
disclosed embodiments may be implemented on one com-
puter or shared/distributed among two or more computers in
or across a network. Communications between computers
implementing embodiments can be accomplished using any
electronic, optical, radio frequency signals, or other suitable
methods and tools of communication in compliance with
known network protocols.

Different programming techniques can be employed such
as procedural or object oriented. Any particular routine can
execute on a single computer processing device or multiple
computer processing devices, a single computer processor or
multiple computer processors. Data may be stored in a single
storage medium or distributed through multiple storage
mediums, and may reside in a single database or multiple
databases (or other data storage techniques). Although the
steps, operations, or computations may be presented in a
specific order, this order may be changed in different
embodiments. In some embodiments, to the extent multiple
steps are shown as sequential in this specification, some
combination of such steps in alternative embodiments may
be performed at the same time. The sequence of operations

US 10,241,992 Bl

15

described herein can be interrupted, suspended, or otherwise
controlled by another process, such as an operating system,
kernel, etc. The routines can operate in an operating system
environment or as stand-alone routines. Functions, routines,
methods, steps, and operations described herein can be
performed in hardware, software, firmware, or any combi-
nation thereof.

Embodiments described herein can be implemented in the
form of control logic in software or hardware or a combi-
nation of both. The control logic may be stored in an
information storage medium, such as a non-transitory com-
puter-readable medium, as a plurality of instructions adapted
to direct an information processing device to perform a set
of steps disclosed in the various embodiments. Based on the
disclosure and teachings provided herein, a person of ordi-
nary skill in the art will appreciate other ways and/or
methods to implement the invention.

It is also within the spirit and scope of the invention to
implement in software programming or code an of the steps,
operations, methods, routines or portions thereof described
herein, where such software programming or code can be
stored in a computer-readable medium and can be operated
on by a processor to permit a computer to perform any of the
steps, operations, methods, routines or portions thereof
described herein. The invention may be implemented by
using software programming or code in one or more digital
computers, by using application specific integrated circuits,
programmable logic devices, field programmable gate
arrays, optical, chemical, biological, quantum or nanoengi-
neered systems, components and mechanisms may be used.
In general, the functions of the invention can be achieved in
many ways. For example, distributed, or networked systems,
components, and circuits can be used. In another example,
communication or transfer (or otherwise moving from one
place to another) of data may be wired, wireless, or by any
other means.

A “computer-readable medium” may be any medium that
can contain, store, communicate, propagate, or transport the
program for use by or in connection with the instruction
execution system, apparatus, system or device. The com-
puter-readable medium can be, by way of example only but
not by limitation, an electronic, magnetic, optical, electro-
magnetic, infrared, or semiconductor system, apparatus,
system, device, propagation medium, or computer memory.
Such computer-readable medium shall generally be
machine-readable and include software programming or
code that can be human readable (e.g., source code) or
machine readable (e.g., object code). Examples of non-
transitory computer-readable media can include random
access memories, read-only memories, hard drives, data
cartridges, magnetic tapes, floppy diskettes, flash memory
drives, optical data storage devices, compact-disc read-only
memories, and other appropriate computer memories and
data storage devices. In an illustrative embodiment, some or
all of the software components may reside on a single server
computer or on any combination of separate server comput-
ers. As one skilled in the art can appreciate, a computer
program product implementing an embodiment disclosed
herein may comprise one or more non-transitory computer-
readable media storing computer instructions translatable by
one or more processors in a computing environment.

A “processor” includes any, hardware system, mechanism
or component that processes data, signals or other informa-
tion. A processor can include a system with a central
processing unit, multiple processing units, dedicated cir-
cuitry for achieving functionality, or other systems. Process-
ing need not be limited to a geographic location, or have

10

15

20

25

30

35

40

45

50

55

60

65

16

temporal limitations. For example, a processor can perform
its functions in “real-time,” “offline,” in a “batch mode,” etc.
Portions of processing can be performed at different times
and at different locations, by different (or the same) pro-
cessing systems.

As used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having,” or any other varia-
tion thereof, are intended to cover a non-exclusive inclusion.
For example, a process, product, article, or apparatus that
comprises a list of elements is not necessarily limited only
those elements but may include other elements not expressly
listed or inherent to such process, product, article, or appa-
ratus.

Furthermore, the term “or” as used herein is generally
intended to mean “and/or” unless otherwise indicated. For
example, a condition A or B is satisfied by any one of the
following: A is true (or present) and B is false (or not
present), A is false (or not present) and B is true (or present),
and both A and B are true (or present). As used herein, a term
preceded by “a” or “an” (and “the” when antecedent basis is
“a” or “an”) includes both singular and plural of such term,
unless clearly indicated otherwise (i.e., that the reference “a”
or “an” clearly indicates only the singular or only the plural).
Also, as used in the description herein, the meaning of “in”
includes “in” and “on” unless the context clearly dictates
otherwise.

It will also be appreciated that one or more of the elements
depicted in the drawings/figures can also be implemented in
a more separated or integrated manner, or even removed or
rendered as inoperable in certain cases, as is useful in
accordance with a particular application. Additionally, any
signal arrows in the drawings/figures should be considered
only as exemplary, and not limiting, unless otherwise spe-
cifically noted. The scope of the disclosure should be
determined by the following claims and their legal equiva-
lents.

What is claimed is:

1. A method, comprising:

displaying, on a user device through a user interface of a

bipartite application, a database table and an image, the
database table having a plurality of columns, the image
containing a table, the bipartite application imple-
mented on the user device and a server machine in a
backend of an enterprise computing environment, the
displaying performed by a client module of the bipartite
application executing on the user device, the client
module including a local model of a table auto-comple-
tion algorithm, the user interface including a user
interface element associated with the table auto-
completion algorithm;

responsive to a user selecting the user interface element

displayed on the user device, performing, by the client

module running the local model of the table auto-

completion algorithm:

analyzing a portion of the table highlighted by the user
on the user interface, the portion of the table high-
lighted by the user on the user interface defining
initial coordinates on the user interface;

determining a data point for each column of the data-
base table using the initial coordinates;

automatically extracting data points thus determined
from the table utilizing the local model;

entering the data points automatically extracted from
the table utilizing the local model into the plurality of
columns of the database table; and

storing information about the data points in the local
model as positive examples;

2 <

US 10,241,992 Bl

17

determining, by the client module running the local model
of the table auto-completion algorithm utilizing the
positive examples in the local model, a plurality of
additional data points in the table;
automatically extracting the plurality of additional data
points from the table utilizing the local model and
entering the plurality of additional data points extracted
from the table utilizing the local model into the plu-
rality of columns of the database table;
receiving, by the client module running the local model of
the table auto-completion algorithm, a correction to a
data point of the plurality of additional data points
automatically extracted from the table utilizing the
local model;
correcting the local model utilizing the correction to the
data point and including the data point in the local
model as a negative example, the correcting performed
by the client module running the local model of the
table auto-completion algorithm;
automatically continuously extracting table information
from the table utilizing the positive and negative
examples in the local model until extraction of the table
information from the table is completed;

communicating the local model from the client module to
a server module of the bipartite application running on
the server machine in the backend of the enterprise
computing environment, the server module including a
global model of a table auto-completion algorithm;

updating the global model of the table auto-completion
algorithm utilizing the local model;
automatically extracting table information from a plural-
ity of documents, the automatically extracting per-
formed by the server module executing on the server
machine utilizing the global model; and

automatically entering into database fields the table infor-
mation extracted from the plurality of documents uti-
lizing the global model, the automatically entering
performed by the server module executing on the server
machine.

2. The method according to claim 1, wherein the table
comprises a complex table having a plurality of items, each
item of the plurality of items containing multiple lines or
rOws.

3. The method according to claim 1, further comprising:

detecting a document type of the image.

4. The method according to claim 3, wherein the plurality
of documents is classified as having the document type.

5. The method according to claim 1, wherein the local
model comprises a cell model defining properties of cells of
a given column, a line model defining a number of cells per
line and transition there-between, and a document model
defining line distances and a number of lines per document
and wherein the plurality of additional data points is auto-
matically extracted from the table utilizing the cell model,
the line model, and the document model.

6. The method according to claim 1, wherein the global
model comprises a cell model defining properties of cells of
a given column, a line model defining a number of cells per
line and transition there-between, and a document model
defining line distances and a number of lines per document
and wherein the table information is automatically extracted
from the plurality of documents utilizing the cell model, the
line model, and the document model.

7. The method according to claim 1, wherein the local
model comprises a plurality of features describing a layout
of a document, the layout including an orientation of the
document.

10

15

20

25

30

35

40

45

50

55

60

65

18

8. A system, comprising:

a processor;

a non-transitory computer-readable medium; and

stored instructions translatable by the processor to per-

form:
displaying, on a user device, a database table and an
image, the database table having a plurality of col-
umns, the image containing a table, the user interface
including a user interface element for table auto-
completion;
responsive to a user selecting the user interface element
displayed on the user device, performing:
analyzing a portion of the table highlighted by the
user on the user interface, the portion of the table
highlighted by the user on the user interface
defining initial coordinates on the user interface;
determining a data point for each column of the
database table using the initial coordinates;
automatically extracting data points thus determined
from the table utilizing the local model;
entering the data points automatically extracted from
the table utilizing the local model into the plurality
of columns of the database table; and
storing information about the data points in a local
model of a table auto-completion algorithm as
positive examples;
determining a plurality of additional data points in the
table utilizing the positive examples in the local
model;
automatically extracting the plurality of additional data
points from the table utilizing the local model and
entering the plurality of additional data points
extracted from the table utilizing the local model into
the plurality of columns of the database table;
receiving a correction to a data point of the plurality of
additional data points automatically extracted from
the table utilizing the local model;
correcting the local model utilizing the correction to the
data point and including the data point in the local
model as a negative example;
automatically continuously extracting table informa-
tion from the table utilizing the positive and negative
examples in the local model until extraction of the
table information from the table is completed;
updating a global model of the table auto-completion
algorithm utilizing the local model;
automatically extracting table information from a plu-
rality of documents utilizing the global model; and
automatically entering into database fields the table
information extracted from the plurality of docu-
ments utilizing the global model.

9. The system of claim 8, wherein the table comprises a
complex table having a plurality of items, each item of the
plurality of items containing multiple lines or rows.

10. The system of claim 8, wherein the image and the
plurality of documents are associated with a document type.

11. The system of claim 8, wherein the local model
comprises a cell model defining properties of cells of a given
column, a line model defining a number of cells per line and
transition there-between, and a document model defining
line distances and a number of lines per document and
wherein the plurality of additional data points is automati-
cally extracted from the table utilizing the cell model, the
line model, and the document model.

12. The system of claim 8, wherein the global model
comprises a cell model defining properties of cells of a given
column, a line model defining a number of cells per line and

US 10,241,992 Bl

19

transition there-between, and a document model defining
line distances and a number of lines per document and
wherein the table information is automatically extracted
from the plurality of documents utilizing the cell model, the
line model, and the document model.

13. The system of claim 8, wherein the local model
comprises a plurality of features describing a layout of a
document, the layout including an orientation of the docu-
ment.

14. A computer program product comprising a non-
transitory computer-readable medium storing instructions
translatable by a processor to perform:

displaying, on a user device, a database table and an

image, the database table having a plurality of columns,

the image containing a table, the user interface includ-

ing a user interface element for table auto-completion;

responsive to a user selecting the user interface element
displayed on the user device, performing:
analyzing a portion of the table highlighted by the user
on the user interface, the portion of the table high-
lighted by the user on the user interface defining
initial coordinates on the user interface;
determining a data point for each column of the data-
base table using the initial coordinates;
automatically extracting data points thus determined
from the table utilizing the local model;
entering the data points automatically extracted from
the table utilizing the local model into the plurality of
columns of the database table; and
storing information about the data points in a local
model of a table auto-completion algorithm as posi-
tive examples;
determining a plurality of additional data points in the
table utilizing the positive examples in the local model;

automatically extracting the plurality of additional data
points from the table utilizing the local model and
entering the plurality of additional data points extracted
from the table utilizing the local model into the plu-
rality of columns of the database table;

receiving a correction to a data point of the plurality of

additional data points automatically extracted from the
table utilizing the local model;

correcting the local model utilizing the correction to the

data point and including the data point in the local
model as a negative example;

10

15

20

25

30

35

40

20

automatically continuously extracting table information
from the table utilizing the positive and negative
examples in the local model until extraction of the table
information from the table is completed;

updating a global model of the table auto-completion

algorithm utilizing the local model;
automatically extracting table information from a plural-
ity of documents utilizing the global model; and

automatically entering into database fields the table infor-
mation extracted from the plurality of documents uti-
lizing the global model.

15. The computer program product of claim 14, wherein
the table comprises a complex table having a plurality of
items, each item of the plurality of items containing multiple
lines or rows.

16. The computer program product of claim 14, wherein
the instructions are further translatable by the processor to
perform:

detecting a document type of the image.

17. The computer program product of claim 16, wherein
the plurality of documents is classified as having the docu-
ment type.

18. The computer program product of claim 14, wherein
the local model comprises a cell model defining properties
of cells of a given column, a line model defining a number
of cells per line and transition there-between, and a docu-
ment model defining line distances and a number of lines per
document and wherein the plurality of additional data points
is automatically extracted from the table utilizing the cell
model, the line model, and the document model.

19. The computer program product of claim 14, wherein
the global model comprises a cell model defining properties
of cells of a given column, a line model defining a number
of cells per line and transition there-between, and a docu-
ment model defining line distances and a number of lines per
document and wherein the table information is automatically
extracted from the plurality of documents utilizing the cell
model, the line model, and the document model.

20. The computer program product of claim 14, wherein
the local model comprises a plurality of features describing
a layout of a document, the layout including an orientation
of the document.

